§ ලංකා විභාග දෙපාර්තරම්කතුව ලී ඉහත ඒතාන දෙපාරකරම්කත්**ලී ලංකා විභාග දෙපාර්තුවේන්තුවා** එනග දෙපාරකරම්කතුව ලී ඉහත ඒතාන දෙපාරගරණ අද මී බෝගතර පැත්තියෙන් නිශෝගත්තාව ගින්නාගත්ත **ඔහානුදේශාව අතුරුකුදෙන් නිහැකි.දෙනා** ආර්ථිකයන් නිහැකියෙන්ට මුදුම්කරේ ලෝක්ක ව Department of Examinations, Sri Lanka Depart**repartment of Examinations, S**ri Lanka Department

නව නිඊදේශය புதிய பாடத்திட்டம் New Syllabus

සංයුක්ත ගණිතය I இணைந்த கணிதம் I Combined Mathematics I

10	S	Ī

පැය තුනයි ජාණ්තු ගණ්ණිනිயாலග් Three hours

විතාග අංකය				
(000000000000000000000000000000000000000	

උපදෙස් :

* මෙම පුශ්න පතුය කොටස් දෙකකින් සමත්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

🕸 A කොටස

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදයි භාවිත කළ හැකිය.

🕸 B කොටස

පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදසිවල ලියන්න.

- * තියමිත කාලය අවසන් වූ පසු A **කොටස, B කොටසට** උඩින් සිටින පරිදි කොටස් දෙන අමුණා විභාග ශාලාධිපතිව භාර දෙන්න.
- lpha පුශ්න පනුයෙහි ${f B}$ කොටස පමණක් විභාග ශාලාවෙන් පිටනට ගෙනයාමට ඔබට අවසර ඇත.

පරික්ෂකගේ පුයෝජනය සඳහා පමණි.

කාවස	පුශ්න අංකය	ලකුණු
	1	
	2	
4.	3	
l	4	
Λ	5	
^	6	
	7	
	8	
	9	
	10	
	11	
	12	
{	13	
B [14	
	15	
	16	
	17	
	එකතුව	
	පුතිශතය	

I පතුය	7	
11 පනුය		
්කතුව		
අවසාන ලකු ණ ු		

	අවසාන ලකුණු
ඉලක්කමෙන්	
අකුරින්	

	සංකේ ත අංක
උන්තර පතු පරීක්ෂක	
පරීක්ෂා කල් : 2	
අධික්ෂණාධ කාල් :	

-		
	# PARTY	
~		

1.	ගණිත අභූදුහත මූලධර්මය භාවිත	යෙන්, සියලු	$n \in \mathbb{Z}^+$ සඳ	$\sum_{r=1}^{n} (2r+1)$	= n(n+2)	බව පාධතය	කරන්න.
			••••••				
		•••••	• • • • • • • • • • • • • • • • • • • •	····		•••••	
			•••••			•••••	
			• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·			•••••
	•••••		•••••				
			•••••	.,			
			•••••••		· · · · · · · · · · · · · · · · · · ·	••••	
			· · · · · · · · · · · · · · · · · · ·			•••••	
			•••••		••••••		
						••••	
			••••			•••••	
	**************************************	• · · • • • • • • · · • • · · • • · · · · • • · · · · • • · · · · • • · · · · • • · · · · • • · · · · • • · · · · • • · · · · • • · · · · • • · · · · • • · · · · • • · · · · • · · · · · • ·	• • •	······································	•		
2.	$\frac{2x+1}{3x-1} \ge 1$ අසමානතාව සසුරාල	හ <i>x</i> හි සිය	ලු තාත්ත්ව	ක අගයන් සො	යන්න.		
2.	$\frac{2x+1}{3x-1}$ ≥1 අසමානතාව සසුරාල	හ <i>x</i> හි සිය	ලූ තාත්ත්ව	ක අගයන් සො	යන්න.		
2.	$\frac{2x+1}{3x-1}$ ≥ 1 අසමානතාව සසුරාල	හ <i>x</i> හි සිය 	ලු තාත්ත්වි	ක අගයන් සො	යන්න.		
2.	$\frac{2x+1}{3x-1} \ge 1$ අසමානතාව සසුරාල	හ <i>x</i> හි සිය	ලු තාත්ත්වි	ක අගයන් සො	යන්න.		
2.	$\frac{2x+1}{3x-1} \ge 1$ අසමානතාව සසුරාල	ත x හි සිය 	ලු තාත්ත්වි	ක අගයන් සො	යන්න.		
2.	$\frac{2x+1}{3x-1}$ ≥ 1 අසමානතාව සසුරාල	ත <i>x</i> හි සිය	ලු තාත්ත්වි	ක අගයන් සො	යන්න.		
2.	$\frac{2x+1}{3x-1} \ge 1$ අසමානනාව සසුරාල	ත x හි සිය 	ලු තාත්ත්වි	ක අගයන් සො	යන්න.		
2.	$\frac{2x+1}{3x-1} \ge 1$ අසමානනාව සසුරාල	ත x හි සිය 	ලු තාත්ත්වි	ක අගයන් සො	යන්න.		
2.	$\frac{2x+1}{3x-1} \ge 1$ අසමානතාව සසුරාල	ත x හි සිය	ලු තාත්ත්වි	ක අගයන් සො	යන්න.		
2.	$\frac{2x+1}{3x-1} \ge 1$ අසමානතාව සසුරාල	ත x හි සිය 	ලු තාත්ත්වි	ක අගයන් සො	යන්න.		
2.	$\frac{2x+1}{3x-1} \ge 1$ අසමානතාව සසුරාල	හ x හි සිය 	ලු තාත්ත්වි	ක අගයන් සො	යන්න.		
2.	$\frac{2x+1}{3x-1} \ge 1$ අසමානනාව සසුරාල	හ x හි සිය	ලු තාත්ත්වි	ක අගයන් සො	යන්න.		
2.	<u>2x+1</u> ≥ 1 අසමානතාව සසුරාල	ත x හි සිය	ලූ තාත්ත්වි	ක අගයන් සො	යන්න.		
2.	$\frac{2x+1}{3x-1} \ge 1$ අසමානනාව සසුරාල	ත x හි සිය	ලූ තාත්ත්වි	ක අගයන් සො	යන්න.		
2.	$\frac{2x+1}{3x-1} \ge 1$ අසමානතාව සසුරාල	ත x හි සිය	ලු තාත්ත්වි	ක අගයන් සො	යන්න.		

3.	පියලු	$n \in \mathbb{Z}$	' සඳ	හා අ	පරිමිත (ශ්ලිකි	යක ද	ළමු ප	c n &	එකතුව	6-	3"-1	- මගින්	දෙනු	ලැබේ.	මෙම	ශේණි	යෙහි
	n වෙ ද ්	හි පද	ය ල	සායා,	ගේණිය	o, q6	රියාරි	ගුණෙ	්ත් ත ර	ශේ ණිය:	ක් බි	ව ල	පත්වන	්ත.				
	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	••••	•••••		••••	•••••	••••		•••••	•••••			•••••	
	•••••		• • • • • •	•••••	••••	•••••	•••••	••••••	••••••	· · · · • · · · · •	••••	••••		•••••	• • • • • • • • • • • • • • • • • • • •			
	•••••		· • • • •	••••		•••••	•••••		•••••	•••••	••••			•••••	• • • • • • • •		•••••	
			• • • • •	•••••	••••••	•••••	•••••		•••••	•••••	••••			•••••		,,,,,,	•••••	••••
			• • • • • •	•••••	•••••	•••••	•••••		•••••	•••••			••••••	•••••	· • • • • • • • • • • • • • • • • • • •			
				•••••	· · · · · · · · · · · · · · · · · · ·				••••		••••			•••••			•••••	
				•••••		•••••			••••		•••••		••••••		• • • • • • • • • • • • • • • • • • • •			
					•••••	•••••			• • • • • • •		••••		• • • • • • •		• • • • • • • • • • • • • • • • • • • •			
									••••	• • • • • • • • • • • • • • • • • • • •	••••	· · · · · ·			••••••	•••••	•;••••	
				· · · · · · ·	•••••	•••••			•••••	•••••		•••••			•••••	· · · · · · ·	•••••	
									••••									
	··			.,					••••									
									• • • • • • •	•••••	• • • • •			•••••	•••••			
						•			•••••									,
	X			,		20												
		_	-	- (a \	_			1	_					960	-	_	
4.			ගති	9 . (-	$x + \frac{a}{x^3}$	8	ද්විප	ද පුස	රණයෙ	හි <i>x</i> ව	ලින්	ස්වා)යන්න	පදය	$\frac{969}{2}$	වේ. <i>ර</i>	7 හි	අගය
4.	a ∈ TR පොයප		ග නි	g . (-	$x + \frac{a}{x^3}$	8	ද්විස	ද පුස	රණයෙ	න <i>x</i> ව	ලින්	ස්වා)යත්ත	පදය	969	වේ. <i>ර</i>	7 හි	අගය
4.			ග ති	9 . ($x + \frac{a}{x^3}$	~ 85 	ද්විප	ද පුසා	රණය	ාහි <i>x</i> ව	ලින්	ස්වා)යන්න ්	, පදය	969 2	වේ. <i>ර</i>	7 හි	අගය
4.			ග ති	9 . (-	$x + \frac{a}{x^3}$	~ 8s	දව්ප	ද පු ස ා	රණයෙ	s8 x ව	ලින්	ස් වා)යත්ත 	, පදය	969	වේ. ර		අගය
4.			ග ති	9 . ($x + \frac{a}{x^3}$		ද්විප	ද පුසා	රණයෙ	8 x 5	ලින්	ස්වා)යන්න 	, , , , , ,	969 2	වේ. ර	7 S	අගය
4.			ග ති	9 . (<i>:</i>	$x + \frac{a}{x^3}$		ද්විත	. පුසා	රණයෙ	8 x 5	ලින්)යන්න	පදය 	969 2	වේ. <i>ර</i>	7 B	අගය
4.			ග ති	9 . (<i>-</i>	$x + \frac{a}{x^3}$		ද්විප	ද පුසා 	රණයෙ	8 x 5	ලින්	# 201)යන්න ්	පදය 	969 2	වේ. <i>ර</i>		අගය
4.			ω 56	9 . (<i>-</i>	$x + \frac{a}{x^3}$		දවිප	ද පු ස ා	රණයෙ 	8 x 5	ලින්)යන්න [*]	පදය 	969 2	වේ. <i>ර</i>		අගය
4.			ග නි	9 . (<i>-</i>	$x + \frac{a}{x^3}$		ද්විප	ද පුසා	රණයෙ 	8 x 5	ලින්)යන්න [*]	පදය 	969 2	වේ. <i>ර</i>	7 S	අගය
4.			ω δ ,	9 . (<i>-</i>	$x + \frac{a}{x^3}$		ද්විප	ද පුසා	රණයෙ 	8 x 5	ලින්)යන්න [*]	පද ය	969 2	වේ. <i>ර</i>		අගය
4.			ω δ	9 . ($x + \frac{a}{x^3}$		ද්විප	, geo	රණයෙ 	8 x 5	ලින්		ායත්ත [*]	පද ය	969	වේ. <i>ර</i>		අගය
4.			ω δ	9 . (<i>.</i>	$x + \frac{a}{x^3}$	8	ද්විප	, geo	රණයෙ 	8 x 5	ලින්		ායත්ත [*]	පදය 	969	eð. <i>(</i>		අගය
4.			ω δ	g. ($\left(x + \frac{a}{x^3}\right)$	8	ද්විප	, geo	රණයෙ	8 x 5	ලින්		ායත්ත [*]	පද ය	969	eð. <i>(</i>		අගය
4.			ω δ	g. ($x + \frac{a}{x^3}$	8	ද්විප	ද පුසා	රණයෙ 	8 x 5	ලින්		ායත්ත [*]	D ¢ω	969	eð. <i>(</i>		අගය
4.			ω δ	g. (<i>:</i>	$\left(x + \frac{a}{x^3}\right)$	8	ද්විප	, geo	රණයෙ	8 x 5	ලින්		ායත්ත [*]	පදය 	969	eð. <i>(</i>		අගය
4.			ω δ	g. ($\left(x + \frac{a}{x^3}\right)$	8	ද්විප	, geo	රණයෙ	8 x 5	ලින්		ායත්ත [*]	D ¢ω	969	eð. <i>(</i>		අගය
4.			ω δ	g. ($x + \frac{a}{x^3}$	8	ද්විප	, geo	රණයෙ	8 x 5	ලින්		ායත්ත .	D ¢ω	969	eð. <i>(</i>		අගය

š.	$\lim_{x \to 0} \frac{1 - \cos x}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} = \frac{1}{2} \partial \mathcal{D}$ පෙන්වන්න.
	i
5.	$\frac{\mathrm{d}}{\mathrm{d}x} \left\{ x \ln \left(x + \sqrt{x^2 + 1} \right) \right\} = \frac{x}{\sqrt{x^2 + 1}} + \ln \left(x + \sqrt{x^2 + 1} \right)$ බව පෙන්වන්න.
	$\frac{\partial x}{\partial x} \left(\frac{1}{\sqrt{x^2 + 1}} \right)$
	් කාඛන්, $\int \ln\left(x+\sqrt{x^2+1}\right) \mathrm{d}x$ ලාගයන්න.
	ජ නාශින්, $\int \ln \left(x+\sqrt{x^2+1}\right) \mathrm{d}x$ සොයන්න.
	ජ නාශින්, $\int \ln \left(x+\sqrt{x^2+1}\right) \mathrm{d}x$ සොයන්න.
	ජ නාශින්, $\int \ln \left(x + \sqrt{x^2 + 1} \right) \mathrm{d}x$ සොයන්න.
	ජනයින්, $\int \ln \left(x+\sqrt{x^2+1}\right) \mathrm{d}x$ සොයන්න.
	ජනයින්, $\int \ln\left(x+\sqrt{x^2+1}\right) \mathrm{d}x$ සොයන්න.
	ජනයින්, $\int \ln\left(x+\sqrt{x^2+1}\right) \mathrm{d}x$ සොයන්න.
	ජනයින්, $\int \ln\left(x+\sqrt{x^2+1}\right) \mathrm{d}x$ සොයන්න.
	ජනයින්, $\int \ln\left(x+\sqrt{x^2+1}\right) \mathrm{d}x$ සොයන්න.
	ජනයින්, $\int \ln\left(x+\sqrt{x^2+1}\right) \mathrm{d}x$ සොයන්න.
	ජනයින්, $\int \ln\left(x+\sqrt{x^2+1}\right) \mathrm{d}x$ සොයන්න.
	ර කරින්, $\int \ln\left(x+\sqrt{x^2+1}\right) \mathrm{d}x$ පොයන්න.
	ර කරින්, $\int \ln\left(x+\sqrt{x^2+1}\right) \mathrm{d}x$ පොයන්න.
	ර කරින්, $\int \ln\left(x+\sqrt{x^2+1}\right) \mathrm{d}x$ පොයන්න.

7.	(3,1) ලක්ෂායෙහි $x+2y+a=0$ සරල රේඛාව මත පුතිබිම්බය $\left(\frac{3}{5},b\right)$ ලක්ෂාය වේ; මෙහි a හා b නියත වේ.
	a හා b හි අගයන් සොයන්න.
	·
0	2200A 11-010A 69-4
ō.	x = 20080, y = SIII0, මගින දෙනු ලබන වකුය C යැය ගනමු; මෙන 0 යනු පදාමනයකි. C වකුයට
o.	$x=2\cos\theta$, $y=\sin\theta$, මඟින් දෙනු ලබන වකුය C යැයි ගනිමු; මෙහි θ යනු පදාමිතියකි. C වනුයට $\theta=\frac{\pi}{4}$ ව අනුරූප ලක්ෂායෙහි දී වූ අභිලම්බයට, C වකුය නැවන $\theta=\alpha$ ට අනුරූප ලක්ෂායෙහි දී
o.	
о.	$ heta=rac{\pi}{4}$ ට අනුරූප ලක්ෂායෙහි දී වූ අභිලම්බයට, C වකුය නැවන $ heta=lpha$ ට අනුරූප ලක්ෂායෙහි දී
о.	$ heta=rac{\pi}{4}$ ට අනුරූප ලක්ෂායෙහි දී වූ අභිලම්බයට, C වකුය නැවන $ heta=lpha$ ට අනුරූප ලක්ෂායෙහි දී
о.	$ heta=rac{\pi}{4}$ ට අනුරූප ලක්ෂායෙහි දී වූ අභිලම්බයට, C වකුය නැවන $ heta=lpha$ ට අනුරූප ලක්ෂායෙහි දී
o.	$ heta=rac{\pi}{4}$ ට අනුරූප ලක්ෂායෙහි දී වූ අභිලම්බයට, C වකුය නැවන $ heta=lpha$ ට අනුරූප ලක්ෂායෙහි දී
o.	$ heta=rac{\pi}{4}$ ට අනුරූප ලක්ෂායෙහි දී වූ අභිලම්බයට, C වකුය නැවන $ heta=lpha$ ට අනුරූප ලක්ෂායෙහි දී
0.	$ heta=rac{\pi}{4}$ ට අනුරූප ලක්ෂායෙහි දී වූ අභිලම්බයට, C වකුය නැවන $ heta=lpha$ ට අනුරූප ලක්ෂායෙහි දී
0.	$ heta=rac{\pi}{4}$ ට අනුරූප ලක්ෂායෙහි දී වූ අභිලම්බයට, C වකුය නැවන $ heta=lpha$ ට අනුරූප ලක්ෂායෙහි දී
·	$ heta=rac{\pi}{4}$ ට අනුරූප ලක්ෂායෙහි දී වූ අභිලම්බයට, C වකුය නැවන $ heta=lpha$ ට අනුරූප ලක්ෂායෙහි දී
0.	$ heta=rac{\pi}{4}$ ට අනුරූප ලක්ෂායෙහි දී වූ අභිලම්බයට, C වකුය නැවන $ heta=lpha$ ට අනුරූප ලක්ෂායෙහි දී
8.	$ heta=rac{\pi}{4}$ ට අනුරූප ලක්ෂායෙහි දී වූ අභිලම්බයට, C වකුය නැවන $ heta=lpha$ ට අනුරූප ලක්ෂායෙහි දී
0.	$ heta=rac{\pi}{4}$ ට අනුරූප ලක්ෂායෙහි දී වූ අභිලම්බයට, C වකුය නැවන $ heta=lpha$ ට අනුරූප ලක්ෂායෙහි දී
	$ heta=rac{\pi}{4}$ ට අනුරූප ලක්ෂායෙහි දී වූ අභිලම්බයට, C වකුය නැවන $ heta=lpha$ ට අනුරූප ලක්ෂායෙහි දී
8.	$ heta=rac{\pi}{4}$ ට අනුරූප ලක්ෂායෙහි දී වූ අභිලම්බයට, C වකුය නැවන $ heta=lpha$ ට අනුරූප ලක්ෂායෙහි දී
8.	$ heta=rac{\pi}{4}$ ට අනුරූප ලක්ෂායෙහි දී වූ අභිලම්බයට, C වකුය නැවන $ heta=lpha$ ට අනුරූප ලක්ෂායෙහි දී

9.	අපය 1 ක වූ ද, කෙන්දුය $x+y=0$ ස්පල පෙක්ව මත වූ ද, C වෘත්තයක්, $x^*+y^*+4y+3=0$ පෘතිතය පුල්මේ ප ජේදනය කරයි. C හි කේන්දුයේ ඛණ්ඩාංක සොයන්න.
	•••••••••••••••••••••••••••••••••••••••
	••••••
	······································
10	$\sin\theta = -\frac{1}{3}$ හා $\pi < \theta < \frac{3\pi}{2}$ නම්, $\sin 2\theta = \frac{4\sqrt{2}}{9}$ හා $\tan 2\theta = \frac{4\sqrt{2}}{7}$ බව පෙන්වන්න.
10.	3 2 33, 4 30 2 30, 4 31 20 3
10.	3 2 32, 412 9 2 32, 4112 7
10.	3 2 3 4 2 2 3 5 4 4 2 2 3 5 4 4 4 2 5 5 6 4 4 4 5 6 5 6 6 6 6 6 6 6 6 6 6 6
10.	
10.	

සියලු ම හිමිකම් ඇවර්ණි / යුලුව පුණුදාරකාලෙන. සදු: / All Rights Reserved]

ම ලංකා විභාග අදහරකමේකතුව ශී ලංකා විභාග අදහරකමේකත්**ලි ලංකා විභාග දෙපාරිකමේන්තුවි**කත දෙපාරකමේන්තුව ශී ලංකා විභාග අදහරකමේන්තුව මී හේතයෝ පැතිත්තයේ නිතාකාර්ගත්ත මී හමුකත්ත ප්**ශියාත්තයක්** කළුණු සිදු මුදුන්තෙන්නේ කිරීම නිතාකාස්තෙන් මී මෙන නැති පත්තය නි Department of Examinations, Sri Lanka Depart**පුරුවන් වේ Examinations,** Sri Carrier of Examinations, Sri Lanka Department

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2013 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர)ப் பரீட்சை, 2013 ஓகஸ்ற General Certificate of Education (Adv. Level) Examination, August 2013

නව නිර්දේශය புதிய பாடத்திட்டம் New Syllabus

கு ஆன்ற க்கிறவ I இணைந்த கணிதம் I Combined Mathematics I

B කොටස

* පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

- 11. (a) $f(x) = ax^3 + bx^2 11x + 6$ යැයි ගනිමු; මෙහි $a,b \in \mathbb{R}$ වේ. (x-1) යන්න f(x) හි සාධකයක් වේ නම් හා f(x) යන්න (x-4) න් බෙදු විට ලැබෙන ශේෂය -6 නම්, a හා b වල අගයන් සොයන්න. f(x) හි අනෙක් ඒකර යාධක දෙකත් සොයන්න.
 - (b) α හා β යනු $x^2+bx+c=0$ සමීකරණයේ මූල යැයි ද, γ හා δ යනු $x^2+mx+n=0$ සමීකරණයේ මූල යැයි ද ගනිමු; මෙහි $b,\ c,\ m,\ n\in {\mathbb R}$ වේ.
 - (i) b හා c ඇසුරෙන් $(\alpha-\beta)^2$ සොයා, **ඒ නයින්**. m හා n ඇසුරෙන් $(\gamma-\delta)^2$ ලියා දක්වන්න. $\alpha+\gamma=\beta+\delta$ නම් $b^2-4c=m^2-4n$ බව **අපෝගනය** කරන්න.
 - (ii) $(\alpha \gamma)(\alpha \delta)(\beta \gamma)(\beta \delta) = (c n)^2 + (b m)(bn cm)$ බව පෙන්වන්න. $x^2 + bx + c = 0$ හා $x^2 + mx + n = 0$ සම්කරණවලට පොදු මූලයක් ඇත්තේ $(c n)^2 = (m b)(bn cm)$ ම නම් පමණක් බව අපෝහනය කරන්න. $x^2 + 10x + k = 0$ හා $x^2 + kx + 10 = 0$ සම්කරණවලට පොදු මූලයක් ඇත; මෙහි k යනු තාන්ත්වික නියනයකි. k හි අගයන් සොයන්න.
- 12. (a) පිසුන් 15 ක ශිෂා සභාවක් විදහා සිසුන් 3 දෙනකුගෙන්, කලා සිසුන් 5 දෙනකුගෙන් හා වාණිජ සිසුන් 7 දෙනකුගෙන් සමන්විත ය. වහපෘතියක වැඩ කිරීම සඳහා මෙම ශිෂා සභාවෙන් සිසුන් 6 දෙනකු තෝරා ගැනීමට අවශා ව ඇත.
 - (i) සිසුන් 15 දෙනාම තෝරා ගැනීම සඳහා සුදුසු නම්,
 - (ii) කිසියම් සිසුන් දෙදෙනකුට එකට වැඩ කිරීම සදහා අවසර නොමැති නම්,
 - (iii) එක් එක් විෂය ධාරාවෙත් සිසුන් දෙදෙනකු බැගින් තේරීමට අවශා නම්,

මෙය සිදු කළ හැකි වෙනස් ආකාර ගණන සොයන්න.

ඉහත (iii) යටතේ තෝරා ගත් කණ්ඩායමක්, එම කණ්ඩායමෙහි විදෳා විෂය ධාරාවෙන් වූ සිසුන් දෙදෙනාට එක ළහ වාඩි වීමට අවසර නොමැති නම්, වෘත්තාකාර මේසයක් වටේට වාඩි කළ හැකි වෙනස් ආකාර ගණන සොයන්න.

(b) $r \in \mathbb{Z}^+$ සඳහා $U_r = \frac{3(6r+1)}{(3r-1)^2(3r+2)^2}$ හා $n \in \mathbb{Z}^+$ සඳහා $S_n = \sum_{r=1}^n U_r$ යැයි ගනිමු. $r \in \mathbb{Z}^+$ සඳහා $U_r = \frac{A}{(3r-1)^2} + \frac{B}{(3r+2)^2}$ වන පරිදි A හා B නියකවල අගයන් සොයන්න.

ඊ නයින්, $n\in\mathbb{Z}^+$ සඳහා $S_n=rac{1}{4}-rac{1}{\left(3n+2
ight)^2}$ බව පෙන්වන්න.

 $\sum_{r=1}^\infty U_r$ අපරිමිත ශ්ලේණිය අභිසාරී වේ ද? ඔබගේ පිළිතු< සතාථ කරන්න.

 $\left|S_n - \frac{1}{4}\right| < 10^{-6}$ වන පරිදි වූ $n \in \mathbb{Z}^+$ හි කුඩාකම අගය සොයන්න.

13. (a)
$$\mathbf{Q} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
 යැයි ගතිමු.

 $\mathbf{Q}^T\mathbf{Q}=\lambda\mathbf{I}$ වන පරිදි වූ $\lambda\in\mathbb{R}$ හි අගය සොයන්න; මෙහි \mathbf{Q}^T යනු \mathbf{Q} නාහසයෙහි පෙරඑම වන අතර \mathbf{I} යනු 2×2 ඒකක නාහසය වේ.

ඊ නයින්,
$$\mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
 නාහසයෙහි පුතිලෝමය සොයන්න.

$${f A}$$
 යනු ${f AP}={f PD}$ වන පරිදි වූ 2×2 නහාසයක් යැයි ගනිමු; මෙහි ${f D}=\begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}$ වේ.

A සොයන්න.

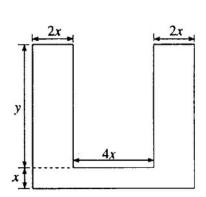
(b) z = x + iy යනු සංකීර්ණ සංඛාාවක් යැයි ගනිමු; මෙහි $x, y \in \mathbb{R}$ වේ. z හි මාපාංකය |z| හා z හි සංකීර්ණ පුතිබද්ධය \overline{z} අර්ථ දක්වන්න.

$$|z|^2 = z\overline{z}$$
 හා $z - \overline{z} = 2i\operatorname{Im} z$ බව පෙන්වන්න.

ඒ නයින්,
$$|z-3i|^2=|z|^2-6\operatorname{Im}z+9$$
 හා $|1+3iz|^2=9|z|^2-6\operatorname{Im}z+1$ බව පෙන්වන්න. $|z-3i|>|1+3iz|$ වන්නේ $|z|<1$ ම නම් පමණක් බව **අපෝගනය** කරන්න.

|z-3i|>|1+3iz| හා ${\rm Arg}\ z={\pi\over 4}$ අවශානා සපුණලන පරිදි වූ z සංකීර්ණ සංඛාා නිරූපණය කරන ලක්ෂා ආගන්ඩ් සටහනක අදින්න.

14. (a) $x \neq 1$ පඳහා $f(x) = \frac{x^2}{x^3 - 1}$ යැයි ගතිමු.


$$x \neq 1$$
 සඳහා $f'(x) = -\frac{x(x^3 + 2)}{(x^3 - 1)^2}$ බව පෙන්වා, $y = f(x)$ පුස්තාරයට $(0, 0)$ හා $\left(-2^{\frac{1}{3}}, -\frac{4^{\frac{1}{3}}}{3}\right)$ හි

දී හැරුම් ලක්ෂා පවතින බව **අපෝහනය** කරන්න.

හැරුම් ලක්ෂා හා ස්පර්ශෝත්මුඛ දක්වමින්, y=f(x) පුස්තාරයෙහි දළ සටහනක් අදින්න.

(b) මායිම සෘජුකෝණික ලෙස හමු වන සරල රේඛා ඛණ්ඩ අටකින් සමන්විත ගෙවත්තක් රූපසටහනෙහි දක්වේ. ගෙවත්තේ මාන මීටරවලින් එහි දක්වා ඇත. ගෙවත්තේ වර්ගඵලය $800~{\rm m}^2$ බව දී ඇත. x ඇසුරෙන් y පුකාශ කර, මීටරවලින් මනිත ලද ගෙවත්තේ පරිමිතිය P යන්න $P=\frac{800}{x}+10x$ මගින් දෙනු ලබන බව ද, පරිමිතිය සඳහා වන මෙම සූතුය වලංගු වත්නේ 0 < x < 10 සඳහා පමණක් බව ද පෙන්වන්න.

ඒ නගීන්, ගෙවත්තේ පරිමිතියෙහි අවම අගය සොයන්න.

- 15. (a) **කොටස් වශයෙන් අනුකලනය** භාවිතයෙන් $\int x^2 \sin^{-1} x \ \mathrm{d}x$ සොයන්න.
 - (b) හින්න භාග භාවිතයෙන් $\int \frac{x^2 + 3x + 4}{(x^2 1)(x + 1)^2} \, \mathrm{d}x$ සොයන්න.
 - (c) $a^2+b^2>1$ වන පරිදි $a,b\in\mathbb{R}$ ගැයි ද,

$$I = \int_{0}^{\pi/2} \frac{a + \cos x}{a^2 + b^2 + a\cos x + b\sin x} \, dx$$
 හා $J = \int_{0}^{\pi/2} \frac{b + \sin x}{a^2 + b^2 + a\cos x + b\sin x} \, dx$ ගැයි ද ගනිමු.

 $aI + bJ = \frac{\pi}{2}$ බව පෙන්වන්න.

bI-aJ සැලකීමෙන් I හා J හි අගයන් සොයන්න.

16. $x^2 + y^2 - 2x - 2y + 1 = 0$ සමීකරණය මගින් දෙනු ලබන S වෘත්තයෙහි කේන්දුයේ බණ්ඩාංක හා අරය සොයා, xy-තලය මත S වෘත්තයෙහි දළ සටහනක් අඳින්න.

P යනු S වෘත්තය මත O මූලයෙහි සිට ඇතින් ම පිහිටි ලක්ෂාය යැයි ගනිමු. P ලක්ෂායේ ඛණ්ඩාංක ලියා දක්වා S වෘත්තයට P ලක්ෂායෙහි දී වූ ස්පර්ශක රේඛාව වන I හි සමීකරණය $x+y=2+\sqrt{2}$ මගින් දෙනු ලබන බව පෙන්වන්න.

l රේඛාව ස්පර්ශ කරන S' වෘත්තයක්, S වෘත්තය P ගෙන් පුහින්න ලක්ෂායක දී බාහිර ව ස්පර්ශ කරයි. (h,k) යනු S' වෘත්තයෙහි කේන්දුයේ ඛණ්ඩාංක යැයි ගනිමු. l රේඛාව අනුබද්ධයෙන් O හි හා S' හි කේන්දුයේ පිහිටීම සලකා බැලීමෙන්, $h+k<2+\sqrt{2}$ බව පෙන්වන්න.

S' හි කේන්දුයේ බණ්ඩාංක $h^2-2hk+k^2+4\sqrt{2}(h+k)=8$ ($\sqrt{2}+1$) යම්කරණය සපුරාලන බව නවදුරටත් පෙන්වන්න.

- 17. (a) $\cos \alpha + \cos \beta \cos \gamma \cos (\alpha + \beta + \gamma) \equiv 4 \cos \frac{1}{2} (\alpha + \beta) \sin \frac{1}{2} (\beta + \gamma) \sin \frac{1}{2} (\gamma + \alpha)$ සර්වසාමා සාධනය කරන්න.
 - (b) $f(x) = 2\sin^2\frac{x}{2} + 2\sqrt{3}\sin\frac{x}{2}\cos\frac{x}{2} + 4\cos^2\frac{x}{2}$ යැයි ගනිමු. f(x) යන්න $a\sin(x+\theta) + b$ ආකාරයට පුකාශ කරන්න; මෙහි a(>0), b හා θ $\left(0 < \theta < \frac{\pi}{2}\right)$ නිර්ණය කළ යුතු නියන වේ.

 $1 \le f(x) \le 5$ බව **අපෝහනය** කරන්න.

 $-\frac{\pi}{6} \le x \le \frac{11\pi}{6}$ සඳහා y = f(x) හි පුස්තාරයෙහි දළ සටහනක් අදින්න.

(c) p > 2q > 0 යැයි ගතිමු.

ABC තිකෝණයක BC, CA හා AB පාදවල දිග පිළිවෙළින් p+q, p හා p-q වේ.

 $\sin A - 2\sin B + \sin C = 0$ බව පෙන්වා $\cos \frac{A - C}{2} = 2\cos \frac{A + C}{2}$ බව **අපෝගන**ය කරන්න.

Visit Online Panthiya YouTube channel to watch Combined Maths and Chemistry Videos

www.onlinepanthiya.com