සියලු ම හිමිකම ඇව්රිණි.

රහසා ලේඛනයකි.

ශී ලංකා විභාග දෙපාර්තමේන්තුව <mark>අ.පො.ස. (උ.පෙළ) විභාගය</mark> - 2024

01 - භෞතික විදනව

ලකුණු දීමේ පටිපාටිය

මෙය උත්තරපතු පරීකෘකවරුන්ගේ පුයෝජනය සඳහා සකස් කෙරිණි. පුධාන/ සහකාර පරීකෘක රැස්වීමේ දී ඉදිරිපත්වන අදහස් අනුව මෙහි වෙනස්කම් කරනු ලැබේ.

අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

ම් ලංකා විභාග දෙපාතර්මෙන්තුව

එක් එක් පුශ්න පතුයේ ලකුණු බෙදී යාමේ සාරාංශය

01. Iczac - 1 × 50 - 50

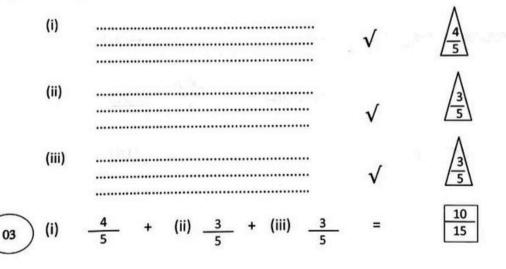
02. || පතුය

A කොටස : එක් පුශ්නයකට ලකුණු 20 බැගින් - 20 × 4 = 80 B කොටස : එක් පුශ්නයකට ලකුණු 30 බැගින් - 30 × 4 = <u>120</u> <u>200</u>

අවසාන ලකුණු - I පතුය = 50 II පතුය - $\frac{200}{4} = 50$

100

මුළු ලකුණු


01 - භෞතික විදනාව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

උත්තරපතු ලකුණු කිරිමේ පොදු ශිල්පීය කුම

උත්තරපතු ලකුණු කිරීමේ හා ලකුණු ලැයිස්තුවල ලකුණු සටහන් කිරීමේ සම්මත කුමය අනුගමනය කිරීම අනිවාර්යයෙන් ම කළ යුතුවේ. ඒ සඳහා පහත පරිදි කටයුතු කරන්න.

- උත්තරපතු ලකුණු කිරීමට රතුපාට බෝල් පොයින්ට් පෑනක් පාවිච්චි කරන්න.
- සෑම උත්තරපතුයකම මුල් පිටුවේ සහකාර පරීක්ෂක සංකේත අංකය සටහන් කරන්න. ඉලක්කම් ලිවීමේදී පැහැදිලි ඉලක්කමෙන් ලියන්න.
- ඉලක්කම් ලිවීමේදී වැරදුණු අවස්ථාවක් වේ නම් එය පැහැදිලිව තනි ඉරකින් කපා හැර නැවත ලියා කෙටි අත්සන යොදන්න.
- 4. එක් එක් පුශ්නයේ අනු කොටස්වල පිළිතුරු සඳහා හිමි ලකුණු ඒ ඒ කොටස අවසානයේ △ ක් තුළ ලියා දක්වන්න. අවසාන ලකුණු පුශ්න අංකයත් සමඟ □ ක් තුළ, භාග සංඛාාවක් ලෙස ඇතුළත් කරන්න. ලකුණු සටහන් කිරීම සඳහා පරීක්ෂකවරයාගේ පුයෝජනය සඳහා ඇති තීරුව භාවිත කරන්න.

උදාහරණ : පුශ්න අංක 03

බහුවරණ උත්තරපතු : (කවුළු පතුය)

- අ.පො.ස. (උ.පෙළ) හා තොරතුරු තාක්ෂණ විභාගය සඳහා කවුළු පතු දෙපාර්තමේන්තුව මගින් සකසනු ලැබේ. නිවැරදි වරණ කපා ඉවත් කළ සහතික කරන ලද කවුළුපතක් ඔබ වෙත සපයනු ලැබේ. සහතික කළ කවුළු පතුයක් භාවිත කිරීම පරීක්ෂකගේ වගකීම වේ.
- 2. අනතුරුව උත්තරපතු හොඳින් පරීකෂා කර බලන්න. කිසියම් ප්‍රශ්නයකට එක් පිළිතුරකට වඩා ලකුණු කර ඇත්නම් හෝ එකම පිළිතුරක්වත් ලකුණු කර නැත්නම් හෝ වරණ කැපී යන පරිදි ඉරක් අඳින්න. ඇතැම් විට අයදුම්කරුවන් විසින් මුලින් ලකුණු කර ඇති පිළිතුරක් මකා වෙනත් පිළිතුරක් ලකුණු කර තිබෙන්නට පුළුවන. එසේ මකන ලද අවස්ථාවකදී පැහැදිලිව මකා නොමැති නම් මකන ලද වරණය මත ද ඉරක් අඳින්න.

01 - භෞතික විදාහව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

ලී ලංකා විභාග දෙපාතර්මෙන්තුව

3. කවුළු පත්‍රය උත්තරපත්‍රය මත නිවැරදිව තබන්න. නිවැරදි පිළිත්ර ✓ ලක්ණකින් ද, වැරදි පිළිත්ර 0 ලක්ණකින් ද වරණ මත ලක්ණු කරන්න. නිවැරදි පිළිත්රු සංඛාව ඒ ඒ වරණ තීරයට පහළින් ලියා දක්වන්න. අනතුරුව එම සංඛාා එකත් කර මුළු නිවැරදි පිළිත්රු සංඛාව අදාළ කොටුව තුළ ලියන්න.

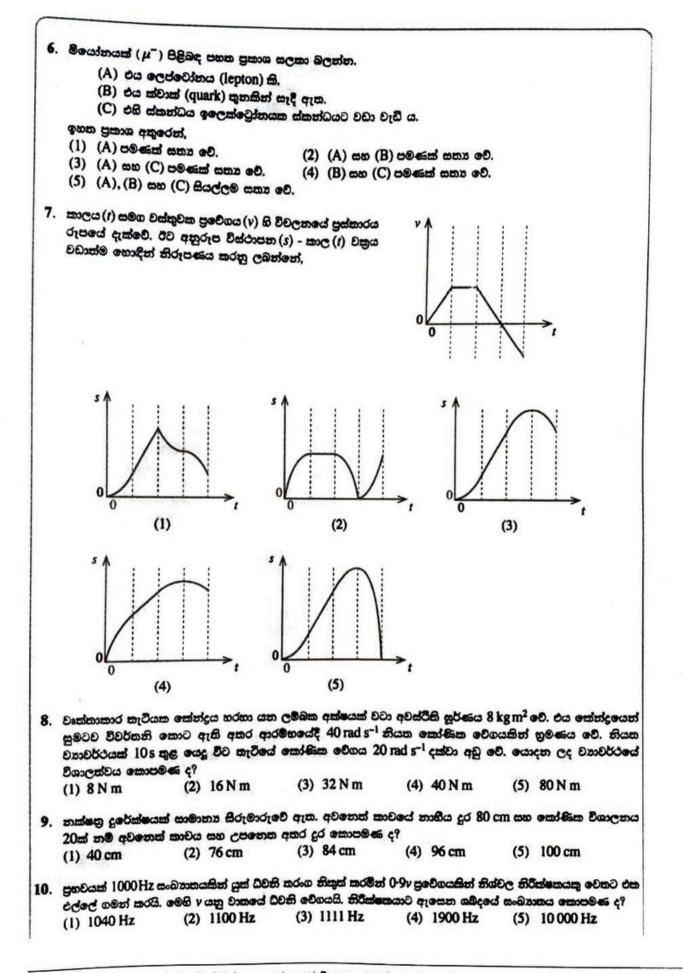
වයුතගත රචනා හා රචනා උත්තරපතු :

- අයදුම්කරුවන් විසින් උත්තරපතුයේ හිස්ව තබා ඇති පිටු හරහා රේඛාවක් ඇඳ කපා හරින්න. වැරදි හෝ නුසුදුසු පිළිතුරු යටින් ඉරි අඳින්න. ලකුණු දිය හැකි ස්ථානවල හරි ලකුණු යෙදීමෙන් එය පෙන්වන්න.
- Cකුණු සටහන් කිරීමේදී ඕවර්ලන්ඩ් කඩදාසියේ දකුණු පස තීරය යොදා ගත යුතු වේ.
- 3. සෑම ප්‍රශ්නයකටම දෙන මුළු ලකුණු උත්තරපත්‍රයේ මුල් පිටුවේ ඇති අදාළ කොට්‍රව තුළ ප්‍රශ්න අංකය ඉදිරියෙන් අංක දෙකකින් ලියා දක්වන්න. ප්‍රශ්න පත්‍රයේ දී ඇති උපදෙස් අනුව ප්‍රශ්න තෝරා ගැනීම කළ යුතුවේ. සියලු ම උත්තර ලකුණු කර ලකුණු මුල් පිටුවේ සටහන් කරන්න. ප්‍රශ්න පත්‍රයේ දී ඇති උපදෙස්වලට පටහැනිව වැඩි ප්‍රශ්න ගණනකට පිළිතුරු ලියා ඇත්නම් අඩු ලකුණු සහිත පිළිතුරු කපා ඉවත් කරන්න.
- 4. පරීකෂාකාරීව මුළු ලකුණු ගණන එකතු කොට මුල් පිටුවේ නියමිත ස්ථානයේ ලියන්න. උත්තරපතුයේ සෑම උත්තරයකටම දී ඇති ලකුණු ගණන උත්තරපතුයේ පිටු පෙරළමින් නැවත එකතු කරන්න. එම ලකුණ ඔබ විසින් මුල් පිටුවේ එකතුව ලෙස සටහන් කර ඇති මුළු ලකුණට සමාන දයි නැවත පරීකෂා කර බලන්න.

ලකුණු ලැයිස්තු සකස් කිරිම :

සියලු ම විෂයන්හි අවසාන ලකුණු ඇගයීම් මණ්ඩලය තුළදී ගණනය කරනු නොලැබේ. එබැවින් එක් එක් පතුයට අදාළ අවසාන ලකුණු වෙන වෙනම ලකුණු ලැයිස්තුවලට ඇතුළත් කළ යුතු ය. I පතුය සඳහා බහුවරණ පිළිතුරු පතුයක් පමණක් ඇති විට ලකුණු ලැයිස්තුවට ලකුණු ඇතුළත් කිරීමෙන් පසු අකුරෙන් ලියන්න. අනෙකුත් උත්තරපතු සඳහා විස්තර ලකුණු ඇතුළත් කරන්න. 51 චිතු විෂයයේ I, II හා III පතුවලට අදාළ ලකුණු වෙන වෙනම ලකුණු ලැයිස්තුවල ඇතුළත් කර අකුරෙන් ද ලිවිය යුතු වේ.

රහතා ලේබනයකි.


ශී ලංකා විභාග දෙපාතර්මෙන්තුව

க கூடி சிலை என்றுகையாக இல்லை என்றுக்கு கூடை குறையை குறையை குறையை குறையை குறையை பிருது குறையை பிருது குறையை குறு க கூடி கேல் என்றுக்கு கால் குறைய பிருது குறைய குறுக்கு குறுக்கு குறைய குறைய பிருது குறைய பிருது குறைய குறைய பிர க கல் கில என்றுக்கு கால் குறைய குறைய குறுக்கு குறுக்கு குறுக்கு குறைய குறுக்கு குறைய குறுக்கு குறைய குறுக்கு க கல் கில என்றுக்கு குறைய குறுக்கு குறுக்கு குறுக்கு குறுக்கு குறுக்கு குறுக்கு குறுக்கு குறைய குறுக்கு குறைய க க கல் கில என்றுக்கு குறுக்கு குறுக்கு குறுக்கு குறுக்கு குறுக்கு குறுக்கு குறுக்கு குறுக்கு குறுக்கு குறுக்கு கைக்கு குறுக்கு குறுக்கு குறுக்கு குறுக்கு குறுக்கு குறுக்கு குறுக்கு குறுக்கு குறுக்கு குறுக்கு கைக்கு குறுக்கு குறைக்கு குறுக்கு குறுக்கு குறைக்கு குறுக்கு குறு குற					
<mark>හෞතික විදානව I</mark> பௌதிகவியல் I Physics I	01 S I		பைல் கூறை இரண்டு மணித்தியாலம் Two hours		
පදෙස් : * මෙම පුශ්න පතුයේ පුශ්න 50ක්, පි * ගියලුම පුශ්නවලට පිළිතුරු සපයන් * පිළිතුරු පතුයේ නියමිත ස්ථානයේ * පිළිතුරු පතුයේ පිටුපස දී ඇති උප	න. ඔබේ විභාග අංකය දි	සියවන්න.			
# 1 සිට 50 තෙක් වූ එක් එක් ප්‍රශ්නය ඉතාමත් ශායුපෙන හෝ පිළිතුර තෝරය ලතුණු කරන්න.		(2), (3), (4), (5) regard 8950 crain	යන පිළිතුරුවලින් නිවැරදි හෝ වන උපදෙත් පරිදි කතිරයකින් (×)		
	(g = Ioms -)				
ඒකකයක් ඇති නමුත් මානයක් නොමැති	පහත සඳහන් හොස්	බික රාශිය කුමක් ර	?		
(1) ජලාන්ක් නියනය	(2) පෘෂ්ඨික ආා	තතිය	2011 1		
(3) ශක්තිය	(4) සාපේක්ෂ පු				
(5) ධවනි සිවුසා මට්ටම					
. වර්නියර් කැලිපරයක පුධාන පරිමාණයේ දිනක් සමාන වර්ගියර් සරීමාණ කොටස්	1-0 cm ක අනුකො 20කට බෙදා ඇත. ස	ටස් 20ක් ඇත. පු හලිපරයේ කඩාම	ධාන පරිමාණ අනුකොටස් 19 මනුම කොපමණ ද?		
දිගක් සමාන වර්නියර් පරිමාණ කොටස් 2 (1) 0-025 mm (2) 0-050 mm	20කට බෙදා ඇත. ස (3) 0-20 mm ය එහි ආරම්භක වාල	බැලිපරයේ කුඩාම (4) 0-25 mm ක ශක්තියෙන් හත පුතිරෝධය නොස	මනුම කොපමණ ද? n (5) 0-50 mm රෙන් එකක් (1) වේ. පුක්ෂිප්ත ලකා හරින්න.)		
දිගක් සමාන වර්නියර් පරිමාණ කොටස් ((1) 0-025 mm (2) 0-050 mm	20කට බෙදා ඇත. ස (3) 0-20 mm ය එහි ආරම්භක වාල	ාලිපරයේ කුඩාම (4) 0-25 mm ක ශක්තියෙන් හත	මනුම කොපමණ ද? n (5) 0-50 mm රෙන් එකක් (<u>1</u>) වේ. පුක්ෂිප්ත		
දිගක් සමාන වර්නියර් පරිමාණ කොටස් 2 (1) 0-025 mm (2) 0-050 mm . පුක්ෂිප්නයක උපරිම උසේදී චාලක ශක්තිය තිරස සමග සාදන පුක්ෂේපණ කෝණය (1) 10° (2) 20°	20කට බෙදා ඇත. ක (3) 0-20 mm ය එහි ආරම්භක චාල කොපමණ ද? (වායු (3) 30° ම පුකාශ සලකා බලා මුත් දිශාවෙන් පුකිවිර න් මත පමණක් ඒවා	තැලිපරයේ කුඩාම (4) 0-25 mm සා ශක්තියෙන් හත පුතිරෝධය නොස (4) 45° ත්න. රුද්ධ වේ.	මනුම කොපමණ ද? n (5) 0-50 mm රෙන් එකක් (1) වේ. පුක්ෂිප්ත ලකා හරින්න.)		
දිගක් සමාන වර්නියර් පරිමාණ කොටස් : (1) 0-025 mm (2) 0-050 mm . පුක්ෂිප්තයක උපරිම උසේදී චාලක ශක්තිය කිරස සමග සාදන පුක්ෂේපණ කෝණය (1) 10° (2) 20° . කියා-පුතිකියා බල යුගලයක් පිළිබඳ පහත (A) ඒවා විශාලත්වයෙන් සමාන න (B) එකිනෙක ස්පර්ශ කරන වස්තූහ (C) ඒවා එකම වස්තුව මත කියා ස ඉහත පුකාශ අතුරෙන්.	20කට බෙදා ඇත. ක (3) 0-20 mm ය එහි ආරම්භක වාල කොපමණ ද? (වායු (3) 30° ම පුකාශ සලකා බලෑ මුත් දිශාවෙන් පුකිවිය න් මත පමණක් ඒවා හරයි.	තැලිපරයේ කුඩාම (4) 0-25 mm ක ශක්තියෙන් හත පුතිරෝධය නොස (4) 45° ත්න. රුද්ධ වේ. කිුයා කරයි.	මනුම කොපමණ ද? n (5) 0-50 mm රෙන් එකක් (1 4) වේ. පුක්ෂිප්ත ලකා හරින්න.) (5) 60°		
දිගක් සමාන වර්නියර් පරිමාණ කොටස් : (1) 0-025 mm (2) 0-050 mm . පුක්ෂිප්තයක උපරිම උසේදී චාලක ශක්තිය කිරස සමග සාදන පුක්ෂේපණ කෝණය (1) 10° (2) 20° . ක්රියා-පුතිකිුියා බල යුගලයක් පිළිබඳ පහත (A) ඒවා විශාලත්වයෙන් සමාන න (B) එකිනෙක ස්පර්ශ කරන වස්තුව (C) ඒවා එකම වස්තුව මත ක්රියා ක ඉහත පුකාශ අතුරෙන්. (1) (A) පමණක් සනා වේ.	20කට බෙදා ඇත. ක (3) 0-20 mm ය එහි ආරම්භක වාල කොපමණ ද? (වායු (3) 30° ම පුකාශ සලකා බලෑ මුත් දිශාවෙන් පුතිවිය ත් මත පමණක් ඒවා තරයි. (2) (A) සහ (B	බැලිපරයේ තුඩාම (4) 0-25 mm සා ශක්තියෙන් හත පුතිරෝධය නොස (4) 45° න්න. රුද්ධ වේ. කිුයා කරයි.	මනුම කොපමණ ද? n (5) 0-50 mm රෙන් එකක් (1 4) වේ. පුක්ෂිප්ත ලකා හරින්න.) (5) 60°		
දිගක් සමාන වර්නියර් පරිමාණ කොටස් : (1) 0-025 mm (2) 0-050 mm පක්ෂිප්තයක උපරිම උසේදී චාලක ශක්තිය තිරස සමග සාදන පුක්ෂේපණ කෝණය (1) 10° (2) 20° . ක්රියා-පුතික්රියා බල යුගලයක් පිළිබඳ පහත (A) ඒවා විශාලත්වයෙන් සමාන න (B) එකිනෙක ස්පර්ශ කරන වස්තූව (C) ඒවා එකම වස්තුව මත ක්රියා ස ඉහත පුකාශ අතුරෙන්. (1) (A) පමණක් සතා වේ. (3) (A) සහ (C) පමණක් සතා වේ.	20කට බෙදා ඇත. ක (3) 0-20 mm ය එහි ආරම්භක වාල කොපමණ ද? (වායු (3) 30° ම පුකාශ සලකා බල නී මත පමණක් ඒවා රේයි. (2) (A) සහ (E (4) (B) සහ (C	තැලිපරයේ කුඩාම (4) 0-25 mm ක ශක්තියෙන් හත පුතිරෝධය නොස (4) 45° ත්න. රුද්ධ වේ. කිුයා කරයි.	මනුම කොපමණ ද? n (5) 0-50 mm රෙන් එකක් (1 4) වේ. පුක්ෂිප්ත ලකා හරින්න.) (5) 60°		
දිගක් සමාන වර්නියර් පරිමාණ කොටස් : (1) 0-025 mm (2) 0-050 mm . පුක්ෂිප්තයක උපරිම උසේදී චාලක ශක්තිය කිරස සමග සාදන පුක්ෂේපණ කෝණය (1) 10° (2) 20° . ක්රියා-පුතිකිුියා බල යුගලයක් පිළිබඳ පහත (A) ඒවා විශාලත්වයෙන් සමාන න (B) එකිනෙක ස්පර්ශ කරන වස්තූහ (C) ඒවා එකම වස්තූව මත ක්රියා ක ඉහත පුකාශ අතුරෙන්. (1) (A) පමණක් සනා වේ. (3) (A) සහ (C) පමණක් සනා වේ. (5) (A), (B) සහ (C) සියල්ලම සභා ද	20කට බෙදා ඇත. ක (3) 0-20 mm ය එහි ආරම්භක වාල කොපමණ ද? (වායු (3) 30° ම පුකාශ සලකා බලය මුත් දිශාවෙන් පුතිවිය ත් මත පමණක් ඒවා තරයි. (2) (A) සහ (B (4) (B) සහ (C	තැලිපරයේ තුඩාම (4) 0-25 mm ක ශක්තියෙන් හත පුතිරෝධය නොක (4) 45° ත්ත. රුද්ධ වේ. කියා කරයි. ම) පමණක් සතා ග) පමණක් සතා ග	මනුම කොපමණ ද? n (5) 0-50 mm රෙන් එකක් (1 4) වේ. පුක්ෂිප්ත ලෙකා හරින්න.) (5) 60° වේ. වේ.		
දිගක් සමාන වර්නියර් පරිමාණ කොටස් : (1) 0-025 mm (2) 0-050 mm . පුක්ෂිප්තයක උපරිම උසේදී චාලක ශක්තිය කිරස සමග සාදන පුක්ෂේපණ කෝණය (1) 10° (2) 20° . ක්රියා-පුතිකිරියා බල යුගලයක් පිළිබඳ පහත (A) ඒවා විශාලත්වයෙන් සමාන න (B) එකිනෙක ස්පර්ශ කරන වස්තූව (C) ඒවා එකම වස්තුව මත ක්රියා ස ඉහත පුකාශ අතුරෙන්. (1) (A) පමණක් සතා වේ. (3) (A) සහ (C) පමණක් සතා වේ. (5) (A), (B) සහ (C) සියල්ලම සතා වේ. . රූපයේ පෙන්වා ඇති පරිදි සුමට තිරස් පහ පහත පුකාශ සලකා බලන්න.	20කට බෙදා ඇත. ක (3) 0-20 mm ය එහි ආරම්භක වාල කොපමණ ද? (වායු (3) 30° ම පුකාශ සලකා බල මූත් දිශාවෙත් පුකිවිය ත් මත පමණක් ඒවා හරයි. (2) (A) සහ (E (4) (B) සහ (C වේ.	තැලිපරයේ කුඩාම (4) 0-25 mm ක ශක්තියෙන් හත පුතිරෝධය නොස (4) 45° ත්ත. රුද්ධ වේ. කියා කරයි. ම) පමණක් සතා ග) පමණක් සතා ග) පමණක් සතා ග	මනුම කොපමණ ද? n (5) 0-50 mm රෙන් එකක් (1 4) වේ. පුක්ෂිප්ත ලෙකා හරින්න.) (5) 60° වේ. වේ.		
දිගක් සමාන වර්නියර් පරිමාණ කොටස් : (1) 0-025 mm (2) 0-050 mm . පුක්ෂිප්තයක උපරිම උතේදී වාලක ශක්තිය කිරස සමග සාදන පුක්ෂේපණ කෝණය (1) 10° (2) 20° . ක්රියා-පුතිකිරියා බල යුගලයක් පිළිබඳ පහත (A) ඒවා විශාලත්වයෙන් සමාන න (B) එකිනෙක ස්පර්ශ කරන වස්තුද (C) ඒවා එකම වස්තුව මත ක්රියා ස ඉහස පුකාශ අතුරෙන්, (1) (A) පමණක් සනා වේ. (3) (A) සහ (C) පමණක් සනා වේ. (5) (A), (B) සහ (C) සියල්ලම සතා වේ. (A) ගැටුම සඳහා රේඛීය ගමාතා (B) ගැටුම සඳහා යෝති සංස්ථිති නි	20කට බෙදා ඇත. ක (3) 0-20 mm ය එහි ආරම්භක වාල කොපමණ ද? (වායු (3) 30° හ පුකාශ සලකා බලෑ මුත් දිශාවෙන් පුතිවිය ත් මත පමණක් ඒවා හරයි. (2) (A) සහ (B (4) (B) සහ (C වේ. ප්ඨයක් මත තබා ඇති සංස්ථිති නියමය වල බියමය වලංගු වේ.	බැලිපරයේ තුඩාම (4) 0-25 mm ක ශක්තියෙන් හත පුතිරෝධය නොස (4) 45° න්න. රුද්ධ වේ. කියා කරයි. () පමණක් සතා ග) පමණක් සතා ග) පමණක් සතා ග) පමණක් සතා ග	මනුම කොපමණ ද? n (5) 0-50 mm රෙන් එකක් (1 4) වේ. පුක්ෂිප්ත ලෙකා හරින්න.) (5) 60° වේ. වේ.		
දිගක් සමාන වර්නියර පරිමාණ කොටස් : (1) 0-025 mm (2) 0-050 mm . පුක්ෂිප්තයක උපරිම උසේදී චාලක ශක්තිය තිරස සමග සාදන පුක්ෂේපණ කෝණය (1) 10° (2) 20° . ක්‍රියා-පුතික්‍රියා බල යුගලයක් පිළිබඳ පහත (A) ඒවා විශාලත්වයෙන් සමාන න (B) එකිනෙක ස්පර්ශ කරන වස්තූහ (C) ඒවා එකම වස්තූව මත ක්‍රියා ස ඉහත පුකාශ අතුරෙන්. (1) (A) පමණක් සනා වේ. (3) (A) සහ (C) පමණක් සනා වේ. (3) (A) සහ (C) පමණක් සනා වේ. (5) (A), (B) සහ (C) සියල්ලම සභා . රූපයේ පෙන්වා ඇති පරිදි සුමට කිරස් පණ පහත පුකාශ සලකා බලන්න. (A) ගැටුම සඳහා රෝබිය ගමානා ((B) ගැටුම සඳහා ශක්ති සංස්ථිති නි (C) ගැටුම නිසා පද්ධතියේ චාලක ශක	20කට බෙදා ඇත. ක (3) 0-20 mm ය එහි ආරම්භක වාල කොපමණ ද? (වායු (3) 30° හ පුකාශ සලකා බලෑ මුත් දිශාවෙන් පුතිවිය ත් මත පමණක් ඒවා හරයි. (2) (A) සහ (B (4) (B) සහ (C වේ. ප්ඨයක් මත තබා ඇති සංස්ථිති නියමය වල බියමය වලංගු වේ.	බැලිපරයේ තුඩාම (4) 0-25 mm ක ශක්තියෙන් හත පුතිරෝධය නොස (4) 45° න්න. රුද්ධ වේ. කියා කරයි. () පමණක් සතා ග) පමණක් සතා ග) පමණක් සතා ග) පමණක් සතා ග	මනුම කොපමණ ද? n (5) 0-50 mm රෙන් එකක් (1 4) වේ. පුක්ෂිප්ත ලෙකා හරින්න.) (5) 60° වේ. වේ.		
 (1) 0-025 mm (2) 0-050 mm පුක්ෂිප්තයක උපරිම උසේදී චාලක ශක්තිය තිරස සමග සාදන පුක්ෂේපණ කෝණය (1) 10° (2) 20° ක්‍රියා-ප්‍රතික්‍රියා බල යුගලයක් පිළිබඳ පහත (A) ඒවා විශාලත්වයෙන් සමාන න (B) එකිනෙක ස්පර්ශ කරන වස්තූහ (C) ඒවා එකම වස්තූව මත ක්‍රියා ස ඉහත ප්‍රකාශ අතුරෙන්, (1) (A) පමණක් සතා වේ. (3) (A) සහ (C) පමණක් සතා වේ. (5) (A), (B) සහ (C) සියල්ලම සතා වේ. (5) (A), (B) සහ (C) සියල්ලම සතා වේ. (5) (A), (B) සහ (C) සියල්ලම සතා වේ. (6) ගැටුම සඳහා රේඛිය ගමාතා (B) ගැටුම කිසා පද්ධතියේ චාලක ශ ඉහත ප්‍රකාශ අතුරෙන්, (1) (A) පමණක් සතා වේ. 	20කට බෙදා ඇත. ක (3) 0-20 mm ය එහි ආරම්භක වාල කොපමණ ද? (වායු (3) 30° ම පුකාශ සලකා බල ලුත් දිශාවෙන් ප්රි ත් මත පමණක් ඒවා තරයි. (2) (A) සහ (B (4) (B) සහ (C වේ. ක්තියෙන් තොටසක් හ (2) (A) සහ (E	 (4) 0-25 mm (4) 0-25 mm (4) 0-25 mm පුතිරෝධය නොස (4) 45° න්න. රුද්ධ වේ. ක්‍රියා කරයි. පමණක් සතා ද ම ලි කුට්ටියක උණ් දංගු වේ. (4)	මනුම කොපමණ ද? n (5) 0-50 mm රෝ එකක් (1/4) වේ. පුක්ෂිප්ත ලංකා හරින්නා.) (5) 60° වේ. වේ. වේ. 		
දිගක් සමාන වර්නියර් පරිමාණ කොටස් : (1) 0-025 mm (2) 0-050 mm . පුක්ෂිප්තයක උපරිම උභේදී වාලක ශක්තිය තිරස සමග සාදන පුක්ෂේපණ කෝණය (1) 10° (2) 20° . ක්‍රියා-පුතික්රියා බල යුගලයක් පිළිබඳ පහත (A) ඒවා විශාලත්වයෙන් සමාන න (B) එකිනෙක ස්පර්ශ කරන වස්තූහ (C) ඒවා එකම වස්තූව මත ක්‍රියා ස ඉහත පුකාශ අතුරෙන්. (1) (A) පමණක් සනා වේ. (3) (A) සහ (C) පමණක් සනා වේ. (3) (A) සහ (C) පමණක් සනා වේ. (5) (A), (B) සහ (C) සියල්ලම සභා රූපයේ පෙන්වා ඇති පරිදි සුමට කිරත් පණ පහත පුකාශ සලකා බලන්න. (A) ගැටුම සඳහා රේඛිය ගමාතා ((B) ගැටුම සඳහා යෝති සංස්ථිති නි (C) ගැටුම නිසා පද්ධතියේ චාලක ශක	20කට බෙදා ඇත. ක (3) 0-20 mm ය එහි ආරම්භක වාල කොපමණ ද? (වායු (3) 30° ම පුකාශ සලකා බලය මුත් දිශාවෙන් පුතිවිය ත් මත පමණක් ඒවා හරයි. (2) (A) සහ (E (4) (B) සහ (C වේ. ක්තියෙන් කොටසක් හ (2) (A) සහ (E (4) (B) සහ (C	 බැලිපරයේ කුඩාම (4) 0-25 mm ක ශක්තියෙන් හත පුතිරෝධය නොස (4) 45° ත්න. රුද්ධ වේ. ක්‍රියා කරයි. පමණක් සතා ද ම ලී කූට්ටියක උණේ ලංගු වේ. 	මනුම කොපමණ ද? n (5) 0-50 mm රෝ එකක් (¼) වේ. පුක්ෂිප්ත ලංකා හරින්න.) (5) 60° වේ. වේ. වේ.		

^{01 -} භෞතික විදාහව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

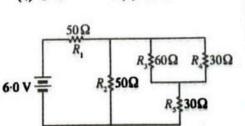
ශී ලංකා විභාග දෙපාතර්මේන්තුව

රහසා ලේබනයකි.

01 - භෞතික විදාහව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

11. ෆැරඩෙගේ විදයුත් චුමබක පේරණය පිළිබඳ නියමය සම්බන්ධ වන්නේ, (1) ආරෝපණ සංස්රීති නියමයට ය. (2) ශක්ති සංස්ථිති නියමයට ය. (3) චලිතය පිළිබඳ නිව්ටන්ගේ නෙවන නියමයට ය. (4) කෝණික ගමාතා සංස්රීති නියමයට ය. (5) රේඛ්ය ගමාතා සංස්ථිති නියමයට ය. 12. අරය 2r වූ සමජාතීය ඒකාකාර වෘත්තාකාර තහඩුවකින් අරය r වූ වෘත්තාකාර කොටසක් රූපයේ දැක්වෙන පරිදි ඉවත් කරනු ලැබේ. තහඩුවේ ඉතිරි කොටසේ ගුරුත්ව කේන්දුය පිහිටීමට වඩාත්ම ඉඩ ඇති ලක්ෂාය වනුයේ, ABCDE (3) C (2) B (1) A (4) D (5) E 13. A සහ B ධවනි පුහව දෙකක් එක්තරා ලක්ෂායක සිට r දුරකින් තබා ඇත. එම ලක්ෂායේදී මනිනු ලබන ධ්වනි තිවුකා මට්ටම පිළිවෙළින් 72 dB සහ 92 dB වේ. එම ලක්ෂායේදී A පුහවයේ ධවනි නිවුකාවය / (W m⁻²) නම්, එම ලක්ෂායේදී B පුභවයේ ධ්වනි කිවුකාවය කුමක් ද? (5) 1001 (4) 251 (3) 201 (2) 10/ (1) 1.3/ 14. පරිපූර්ණ පරිණාමකයක පුාථමික දඟරයේ වට 200ක් සහ ද්විතීයික දඟරයේ වට 400ක් ඇත. පුාථමිකය වර්ග මධානත මූල චෝල්ට්යතාව V_{r.m.s.} = 110 V වන පුතාාවර්තක වෝල්ට්යතා පුභවයකට සම්බන්ධ කළ විට / _m.s. = 10A ධාරාවක් එහි ගලයි. ද්විතියිකයේ r.m.s. චෝල්ටියතාව සහ r.m.s. ධාරාව පිළිවෙළින් දෙනු ලබන්නේ, (3) 220 V, 10 A (4) 220 V, 5 A (5) 55 V, 10 A (2) 440 V, 5 A (1) 55 V, 20 A 15. නිරස් භුමණ වේදිකාවක් මතුපිට තබා ඇති කුඩා කාසියක් සහ මතුපිට පෘෂ්ඨය අතර ස්ථිතික ඝර්ෂණ සංගුණකය 0·36ක් වේ. හුමණ වේදිකාවේ හුමණ වෙගය 30 rpm (විනාඩියකට පරිහුමණ) වේ. හුමණ වේදිකාවේ මැද සිට කාසිය ලිස්සා නොයන උපරිම දුර කොපමණ ද? (π=3 ලෙස ගන්න.) (5) 72 cm (2) 12 cm (4) 40 cm (3) 36 cm (1) 4 cm 16. වෙනස් දුවාවලින් සාදන ලද ස්කන්ධ පිළිවෙළින් 10 kg සහ

5 kg වූ A සහ B පෙට්ටි දෙකක් රූපයේ පෙන්වා ඇති පරිදි 100 N රඑ නිරස් පෘෂ්ඨයක් මත නබා ඇත. A පෙට්ටිය සහ පෘෂ්ඨය A අතර ගතික ඝර්ෂණ සංගුණකය 0-5 වේ. A පෙට්ටියට 100 N 10 kg තිරස් බලයක් යෙදු විට A සහ B පෙට්ටි අතර පුතිකියා බලය සංගුණකය කොපමණ වේ ද? (4) 0.4 (5) 0.3 (3) 0-5 (2) 0.6 (1) 0.7


17. එක්තරා උෂ්ණත්වයකදී මිලිමීටර කියවීම 5×10⁻⁵mm දක්වා නිරවදා වන පරිදි මිනුමක් ලබා ගැනීම සඳහා වානේ මීටර කෝදුවක් භාවිත කළ යුතු ය. මැනීමේදී අනුදත් (අවසර දිය හැකි) උපරිම උෂ්ණත්ව විචලනය කොපමණ ද? (වානේවල රේඛීය පුසාරණතාව 1×10⁻⁵ ℃⁻¹ වේ.)

(3) 1°C

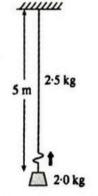
ශී ලංකා විභාග දෙපාතර්මෙන්තුව

(4) 2°C (5) 5°C

- 18. රූපයේ දැක්වෙන පරිදි පුතිරෝධක පහක් සහ බැටරියක් සමබන්ධ කොට ඇත. බැවරියේ වි.ගා.බ. 60 V වන අතර එයට නොගිණිය හැකි අභාන්තර පුතිරෝධයක් ඇත. RA පුතිරෝධකය හරහා චෝල්ට්යතාව කොපමණ ද?
 - (2) 0-8 V (3) 1·2 V (1) 0.7 V (5) 2.4 V (4) 2·0 V

R

5 kg


01 - භෞතික විදහාව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

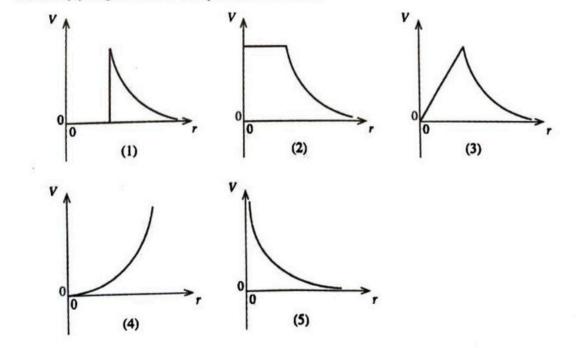
ශු ලංකා විභාග දෙපාතර්මෙන්තුව

රහසා ලේබනයකි.

19. දිග 5·0 m සහ ස්කන්ධය 2·5 kg වන ඒකාකාර කඔයක් දෘඪ ආධාරකයක සිරස්ව එල්ලා ඇත. රූපයේ පෙන්වා ඇති පරිදි කඔයේ නිදහස් කෙළවරට 2·0 kg ක ස්කන්ධයක් සම්බන්ධ කොව ඇත. තරංග ආයාමය 2·0 cm වූ කිර්යක් ස්පන්දයක් කඔයේ පහළ කෙළවරේ ජනනය කරනු ලැබේ. කඔයේ මුදුනට ස්පන්දය පැමිණි විට එහි තරංග ආයාමය කොපමණ ද?

(1) 1.5 cm (2) 2.0 cm (3) 2.5 cm (4) 3.0 cm (5) 4.0 cm

20. සමාන දිගකින් යුත් කම්බී හතරක් එකම ආතතියකට බඳුන් කොට ඇත. මෙම කම්බිවල ගුණ පහත පරිදි වේ.


කම්බිය	දුවාෂයේ යං මාපාංකය (×10 ¹¹ N m ⁻²)	විෂ්කම්භය (mm)
A	2.0	1.0
B	2.0	2.0
С	1.0	1.0
D	1.0	2.0

පහත සඳහන් කුමන පුකාශය සතා වේ ද?

- A කමබිය ට විශාලතම විනතිය ඇත. (2) B කමබිය ට විශාලතම විතතිය ඇත.
- (3) C කම්බිය ට විශාලකම විතතිය ඇත. (4) D කම්බිය ට විශාලකම විකතිය ඇත.
- (5) සියලුම කම්බිවලට එකම විතතිය ඇත.
- 21. අරය 2 cm වූ සිහින් සැහැල්ලු වෘත්තාකාර පුඩුවක් දුවයක මතුපිට පෘෂ්ඨයට යන්තමින් පහළින් තබා ඇත. මෙම පුඩුව දුව මතුපිටින් ඉහළට ඇද ගැනීමට 0-04N බලයක් අවශා නම්, (දුව පටලය යන්තමින් කැඩීමට පෙර) දුවයේ පෘෂ්ඨික ආතතිය කොපමණ ද?

(1) 4 Nm^{-1} (2) 2 Nm^{-1} (3) $\frac{1}{\pi} \text{ Nm}^{-1}$ (4) $\frac{1}{2\pi} \text{ Nm}^{-1}$ (5) $\frac{1}{4\pi} \text{ Nm}^{-1}$

 ඒකාකාර ලෙස ආරෝපණය කළ ලෝහමය කුහර ගෝලීය කබොලක කේන්දුයේ සිට ඇති දුර (r) සමග විදයුක් විභවයේ (V) විචලනය වඩාත්ම හොඳින් නිරුපණය වන්නේ,

01 - භෞතික විදාහව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

රහසා ලේබනයකි. ලී ලංකා විභාග දෙපාතර්මෙන්තුව 23. රූපයේ පෙන්වා ඇති පරිදි ඉතා පටු නළයක කෙළවර, අරය r වන සබන් මුමුලක් සාදා ඇත. පසුව මුමුලේ අරය 2r දක්වා ඉහළ නංවා ගැනීමට තවත් වාතය සමෝෂ්ණ ලෙස මුමුල තුළට පිඹින ලදී. පහත පුකාශ සලකා බලත්න. (A) බුබුල තුළ පීඩනය වැඩි වේ. (B) බුබුලේ පෘෂ්ඨික විහව ශක්තිය හතර ගුණයකින් වැඩි වේ. (C) බුබුලේ පරිමාව හතර ගුණයකින් වැඩි වේ. ඉහත පුකාශ අතුරෙන්, (2) (B) පමණක් සතා වේ. (1) (A) පමණක් සභා වේ. (4) (B) සහ (C) පමණක් සතා වේ. (3) (A) සහ (B) පමණක් සතා වේ. (5) (A), (B) සහ (C) සියල්ලම සතා වේ. 24. නියත උෂ්ණත්වයක පවත්වා ගනිමින් ඒකාකාර ලෝහ කම්බියක් හරහා / ධාරාවක් ගලයි. පහන දැක්වෙන කුමන පුස්තාරය කම්බියේ I ධාරාව සමග කම්බියේ ක්ෂමතා උත්සර්ජනය P හි විචලනය වඩාත්ම හොඳින් නිරූපණය 20 BOC n 0 0 (3) (2) (1) 0 0 (5) (4) 25. ස්පර්ශව පවතින තුනී විදුරු කාච දෙකක සංයුක්ත බලය +3D (ඩයොප්ටර) වේ. එක් කාචයක් උත්තල සහ එහි නාභීය දුර 20 cm වේ නම් අනෙක් කාචයේ වර්ගය සහ නාභීය දුර තුමක් ද? (2) qDag, 50 cm (1) cetere, 50 cm (4) quanc, 12.5 cm (3) como, 12.5 cm (5) qDmc, 10 cm 26. රූපයේ පෙන්වා ඇති AB විභවමාන කම්බියේ දිග 100 cm වන අතර පුතිරෝධය 10 Ω වේ. එය R පුතිරෝධයක් සහ අභාත්තර පුතිරෝධය නොගිණිය හැකි වි.ගා.බ. 2 V වූ කෝෂයක් සමග ලෝණිගතව සම්බන්ධ කොට ඇත. කුඩා 10 mV වී.ගා.බ.යක් සහිත පුහවයක් සඳහා සංකූලන දිග 40 cm වන බව සොයා ගන්නා ලදී. R හි අගය කොපමණ ද? (3) 900 Ω (2) 800 Ω (1) 790 Ω G 10 m (5) 1500 Ω (4) 1000 Ω 27. විකිරණයිලි 235 U, 231 Pa බවට ක්ෂය වීමේදී පහත සඳහන් තුමන අංශු වීමෝචනය වේ ද? (1) එක් ඇල්ෆා අංශුවක් සහ එක් ඉලෙක්ටුෝනයක් (2) එක් පුෝටෝනයක් සහ නියුටෝන හතරක් (3) එක් ඇල්ෆා අංශුවක් සහ එක් පොසිටුෝනයක් (4) එක් ඇල්ෆා අංශුවක් සහ එක් නියුවෝනයක් (5) එක් ඇල්ෆා අංශුවක් සහ පොසිටුෝන දෙකක්

^{01 -} භෞතික විදාහව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

ම් ලංකා විභාග දෙපාතර්මෙන්තුව

(1) 0-5 kg

අමතර ජල වාෂ්ප ස්කන්ධයක් එකතු කළ යුතු ද?

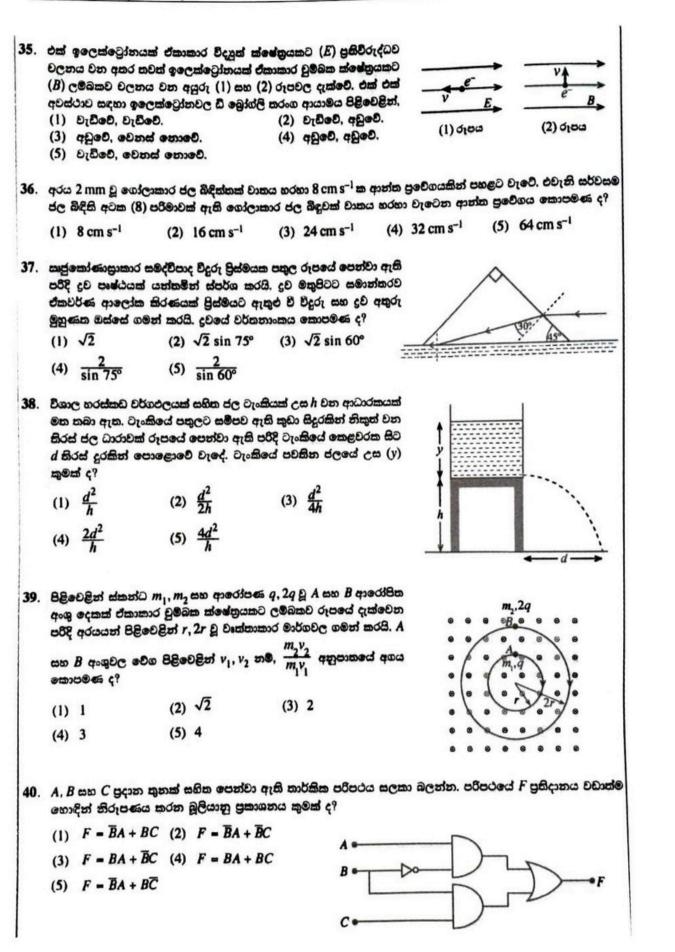
(2) 0-75 kg

රහසා ලේබනයකි.

9

(5) 1.5 kg

(4) 1.25 kg


29. ආරම්භයේ අනන්ත දුරකින් පිහිටි ලක්ෂායිය ආරෝපණ තුනක් සමපාද නිකෝණයක ශිර්ෂ කරා ගෙන එන ලදී. ඒවායින් ආරෝපණ දෙකක ආරෝපණය +q බැගින් වේ. බ්කෝණයේ ශීර්වෙලට ආරෝපණ තුන ගෙන ඒමේදී විදයුත් ක්ෂේතය මගින් සිදු කරන ලද සම්පූර්ණ කාර්යය ශනා වීමට නම් තෙවන ආරෝපණයේ අගය කුමක් විය යුතු ද? (5) -49 $(1) -\frac{q}{4}$ $(2) -\frac{q}{2}$ (3) - q(4) -2q30. සනත්වය β වූ දුවායකින් සැදුනු කුඩා ඝන ගෝලයක් ටැංකියක ජල මතුපිටට පහළින් Η ගැඹුරක සිට නිසලතාවයෙන් මුදා හරී. ජලයේ ඝනත්වය ρ (ρ>β) වේ. ගෝලය ජල මතුපිවේ සිට ඉහළ යන උපරිම උස තුමක් ද? සියලු දුස්සුාවි බල සහ ජලයේ පෘෂ්ධික ආනතිය නොසලකා හරින්න. (2) $\frac{\beta}{\rho}H$ (3) $\left(1+\frac{\rho}{\beta}\right)H$ (4) $\left(1-\frac{\beta}{\rho}\right)H$ (5) $\left(\frac{\rho}{\beta}-1\right)H$ (1) $\frac{\rho}{R}H$ 31. A සහ B යන ඝන ගෝල දෙකක් සර්වසම පෘෂ්ඨිය ගුණ ඇති එකම දුවායකින් සාදා ඇත. A ගෝලයේ විෂ්කමභය B ගෝලයේ විෂ්කම්භයෙන් හරි අඩකි. ඒවා එකම උෂ්ණත්වයකට රත් කර පසුව සමාන පරිසර තත්ව යටතේ සිසිල්වීමට ඉඩ හරිනු ලැබේ. A සහ B හි ආරම්භක සිසිලන ශීසුකා පිළිවෙළින් R_A සහ R_B වේ. පහත සඳහන් තුමක් සතා මේ ද? (2) $R_A = \frac{1}{2}R_B$ (3) $R_A = \frac{1}{4}R_B$ (4) $R_A = 2R_B$ (5) $R_A = 4R_B$ (1) $R_A = R_B$ + 10 V 32. පරිපථ රූප සටහනෙහි පෙන්වා ඇති ටුාන්සිස්ටරය කියාකාරී කලාපයේ කියාත්මක වේ. V_{CE} හි ආසන්න අගය කොපමණ ද? V_{BE} = 0-6V යැයි EIKΩ 50 kΩ 3 උපකල්පනය කරන්න. C (3) 4·6V (1) 1.6V (2) 3·4V F (5) 7·4V (4) 5·2V 50 kΩ ≸ ≩2kΩ 33. 30°C පවතින ජලය 100 g ක ස්කන්ධයක් සහ –10°C පවතින අයිස් 100 g ක ස්කන්ධයක් පරිවරණය කරන ලද හාජනයක, පරිසරය සමග තාප හුවමාරුවක් නොවන පරිදි මිශු කරන ලදී. අයිස් සහ ජලයේ විශිෂ්ට තාප ධාරිතා පළළ වළත් 2×10³ J kg⁻¹K⁻¹ , 4×10³ J kg⁻¹K⁻¹ සහ අයිස්වල විලයනයේ විශිෂ්ට ගුප්ත කාපය 3×10⁵ J kg⁻¹ බව උපසාල්පනය කරන්න. මිශුණයේ සමතුලිත උෂ්ණත්වය කොපමණ ද? (5) -25°C (2) 0°C (3) -5°C (4) -10°C (1) 5°C 34. රූපයේ දැක්වෙන ආකාරයට සමාන්තරගත පුතිරෝධක කට්ටලයක් සහ ශේණිගත පුතිරෝධක කට්ටලයක් සම්බන්ධ කර ඇත. පුතිරෝධකවල පුතිරෝධ අගයන් සමාන හෝ සමානා නොවිය හැක. පහත කුමන පුකාශය **සාමට්ටම** සතා ද? (1) සමාන්තරගත පුතිරෝධක කට්ටලයේ එක් එක් පුතිරෝධකය හරහා ගලන ධාරාව එකම වේ. (2) ලේණිගත පුතිරෝධක කට්ටලයේ එක් එක් පුතිරෝධකය හරහා වෝල්ටියතා බැස්ම එකම වේ. (3) ශේණිගත පුතිරෝධක කට්ටලයේ ඕනෑම තනි පුතිරෝධකයක පුතිරෝධ අගයට වඩා සමස්ත ජාලයේ මුළු පුතිරෝධය වැඩි වේ. (4) සමස්ස ජාලයේ මුළු පුතිරෝධය සමාන්තරගත පුතිරෝධක කට්ටලයේ විශාලකම පුතිරෝධයට වඩා අඩු ය. (5) සමස්ත ජාලයේ මුළු පුතිරෝධය ජාලයේ ඕනෑම තනි පුතිරෝධකයක පුතිරෝධයට වඩා අඩු ය. 01 - භෞතික විදහාව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

28. පරිමාව 75 m³ වන සංවෘත කාමරයක් තුළ වාතයේ නිරපේක්ෂ ආර්දුතාවය 0.04 kg m³ වන අතර සාපේක්ෂ ආර්දුතාවය 75 % වේ. එම උෂ්ණත්වයේදීම කාමරය ජල වාෂ්පවලින් සන්තෘප්ත කිරීමට නම් කාමරයට කොපමණ

(3) 1.0 kg

ම් ලංකා විභාග දෙපාතර්මෙන්තුව

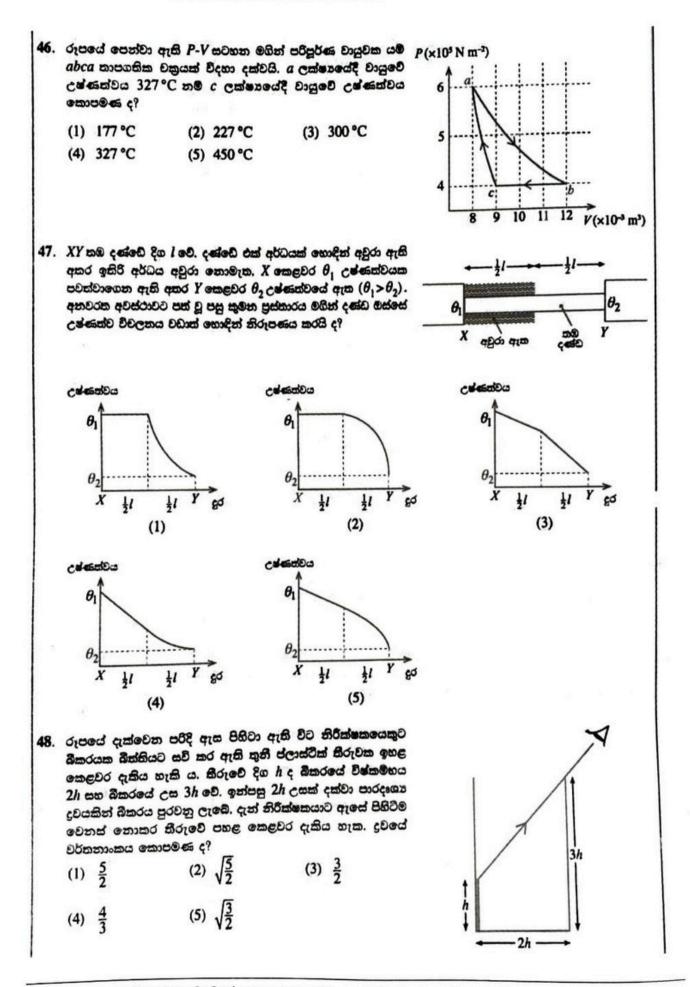
රහසා ලේඛනයකි.

01 - භෞතික විදහාව (ලකුණු දීමේ පරිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

ලී ලංකා විහාග දෙපාතර්මෙන්තුව

41. රූපයේ පෙන්වා ඇති පරිදි ස්කන්ධය m වූ ලෝහමය බෝලයක් දීග 2.0m බැගින් වූ සැහැල්ලු කම්බී දෙකකින් සිරස් දණ්ඩකට සම්බන්ධ රහසා ලේබනයකි.

- කර ඇත. කමබි තදින් ඇදී තිබෙන පරිදි 2·0m පරතරයකින් දණ්ඩට දෘඪව සවිකර ඇත. ඇටවුම නියන කෝණික පුවේගයකින් දන්ඩේ 2 m අක්ෂය වටා භූමණය වේ. පහළ කම්බියේ ආතතිය (T) මෙන් ඉහළ කමබියේ ආනතිය දෙගුණයකි (27). බෝලයේ කෝණික පුළුගය (rad s-1) කොපමණ ද? 2 m √3 m (1) 人名 (2) $\sqrt{\frac{3}{2}8}$ (3) √3g (4) 3√g (5) 5√g 42. X සහ Y සර්වසම ධාරිතුක දෙකක් රූපයේ පෙන්වා ඇති පරිදි K ව්වෘත ස්විච්චියක් සහිත කම්බියක් මගින් සම්බන්ධ කර ඇත. ආරම්භයේදී X ධාරීතුකයට q ආරෝපණයක් ලබා දෙන අතර Y අනාරෝපිතව පවතී. ස්විච්චිය වැසූ පසු ධාරිතුක පිළිබඳ කර ඇති පහත පූතාශ සලකා බලන්න. (A) X ධාරිතුකයේ ආරෝපණය 9 දක්වා අඩුවේ. (B) X ධාරිතුකය හරහා වෝල්ට්යතාව එහි ආරම්භක අගයෙන් වෙනස් නොවේ. (C) X ධාරිතුකයේ ගබඩා වී ඇති ශක්තිය ආරම්භක අගයෙන් හරි අඩකට අඩුවේ. ඉහත පුකාශ අතුරෙන්, (1) (A) පමණක් සතා වේ. (2) (B) පමණක් සනා වේ. (3) (A) සහ (C) පමණක් සතා වේ. (4) (B) සහ (C) පමණක් සතා වේ. (5) (A), (B) සහ (C) සියල්ලම සභා වේ. 43. ති්රසට ආනතිය θ වූ ආනත කලයක ඉහළ අර්ධය සුමට වන අතර පහළ අර්ධය රඑ වේ. කලයේ මුදුනේ සිට නිසලතාවයෙන් ගමන් අරඹන කුට්ටියක් පහළට ලිස්සා ගොස් තලය පාමුලදී නැවස නිසල වේ. තලයේ පහළ අර්ධය සහ කුට්ටිය අතර ගතික ඝර්ෂණ සංගුණකය µ දෙනු ලබන්නේ, (1) $\mu = 2 \tan \theta$ (2) $\mu = \cos \theta$ (3) $\mu = \tan \theta$ (4) $\mu = 2 \sin \theta$ (5) $\mu = 3 \tan \theta$ 44. පෘථිවිය වටා වෘත්තාකාර පථයක ගමන් කරන චන්දිකාවක චාලක ශක්තිය, ගුරුත්වාකර්ෂණ විභව ශක්තිය සහ මූළු ශක්තිය පිළිවෙළින් K, V සහ E මගින් දෙනු ලබයි. පහත කුමන සම්බන්ධතාවය හතා වේ ද? (1) E = -K(2) V = -K(3) V = E(4) K = -2E(5) K = V45. පළල a සහ දිග b වූ ABCD සාජුකෝණාසාකාර කමබී පුඩුවක් රූපයේ පෙන්වා ඇති පරිදි ස්ථාවර I ධාරාවක් රැගෙන යන දිගු සෘජු කම්බියක් සමග ඒකතලව තබා ඇත. පුඩුව දකුණට චලනය කරන විට කම්බිය සහ පුඩුවේ AD පැත්ත අතර ඇති දුර r වන අවස්ථාවේ පුඩුවේ පේරිස ධාරාව i වේ. පුඩුව මත ඇති සඵල වුම්බක බලයේ විශාලත්වය කුමක් ද? (1) $\frac{\mu_0 li}{2\pi} \frac{b}{a}$ (2) $\frac{\mu_0 li}{2\pi} \frac{(r+a)}{r}$ (3) $\frac{\mu_0 li}{2\pi} \frac{r}{(r+a)}$
 - (4) $\frac{\mu_0 li}{2\pi} \frac{ab}{r(r+a)}$ (5) $\frac{\mu_0 li}{2\pi} \frac{r(r+a)}{ab}$


01 - භෞතික විදාහව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

11

a

ශී ලංකා විභාග දෙපාතර්මෙන්තුව

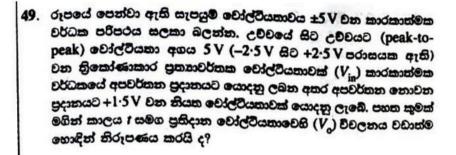
රහතා ලේබනයකි.

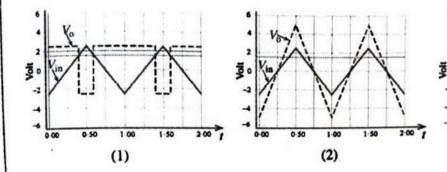
01 - භෞතික විදහාව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

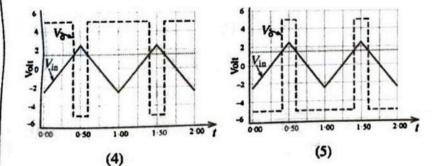
 $+V_{cc} = +5 V$

 $-V_{cc} = -5 V$

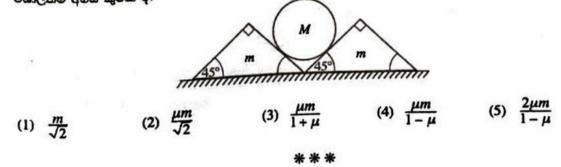
1.50


1-00


(3)


0.50

2.00 1


+1.5 V

50. එක එකෙහි ස්කන්ධය m වන සර්වසම සෘජුකෝණාසාකාර සමද්විපාද කුඤ්ඤ දෙකක් රඑ සිරස් පෘෂ්ඨයක් මත එකිනෙකට යාබදව තබා ඇත. රූපයේ දැක්වෙන පරිදි ස්කන්ධය M වූ ඝන සිලින්ඩරයක් කුඤ්ඤ මත සමතුලිතව තබා ඇත. සිලින්ඩරය සහ කුඤ්ඤ අතර ඝර්ෂණයක් නොමැති බව උපකල්පනය කරන්න. කුඤ්ඤ සහ තිරස් තබා ඇත. සිලින්ඩරය සහ කුඤ්ඤ අතර ඝර්ෂණයක් නොමැති බව උපකල්පනය කරන්න. කුඤ්ඤ සහ තිරස් පෘෂ්ඨය අතර ස්ථිතික ඝර්ෂණ සංගුණකය µ වේ. කුඤ්ඤ ලිස්සායාමකින් තොරව සමතුලිත කළ හැකි M හි විශාලතම අගය කුමක් ද?

01 - භෞතික විදාහව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළක් කළ යුතුව ඇත.

ම් ලංකා විභාග දෙපාතර්මෙන්තුව

රහසා ලේබනයකි.

ශී ලංකා විභාග දෙපාර්තමේන්තුව

இலங்கைப் பரீட்சைத் திணைக்களம்

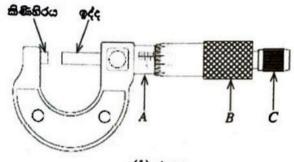
டி.பே.க. (டு.பேடூ) 5லைகை/ க.பொ.த. (உயர் தர)ப் பரீட்சை – 2024

ලකුණු දීමේ පටිපාටිය / புள்ளி வழங்கும் திட்டம்

ല്രശ് ്പാതര ഖിങ്ങന இல.	පිළිතුරු අංකය ඛාිනාட இல.	ല്ലയ്മ അതര ഖിങ്ങ്ങ இல.	පිළිතුරු අංකය ඛානட இல.	පුශ්න අංකය ഖിങ്ങ്ങ இல.	පිළිතුරු අංකය ඛානட இல.	ല്ലയ്ക്ക අංකය ഖിങ്ങ്ങ இல.	පිළිතුරු අංකය ඛානட இல.	ല്പൾන අංකය ഖിങ്ങന இல.	පිළිතුරු අංකය ඛානL இல.
01.	05	11.	02	21.	04	31.	04	41.	03
02.	01	12.	04	22.	02	32.	02	42.	01
03.	05	13.	05	23.	02	33.	02	43.	01
04.	01	14.	04	24.	03	34.	03	44.	01
05.	05	15.	04	25.	02	35.	03	45.	04
06.	03	16.	01	26.	01	36.	04	46.	01
07.	03	17.	05	27.	01	37.	02	47.	04
08.	02	18.	02	28.	03	38.	03	48.	02
09.	03	19.	04	29.	02	39.	05	49.	04
10.	05	20.	03	30.	05	40.	01	50.	05
				-		-		-	

I පතුය / பத்திரம் I

🗘 විශේෂ උපදෙස් / விசேட அறிவுறுத்தல் :


චක් පිළිතුරකට / ඉரு சரியான விடைக்கு ලකුණු 01 වැගින් / புள்ளி வீதம்

මුළු ලකුණු / பொத்தப் புள்ளிகள் 1 × 50 = 50

ගී ලංකා විභාග දෙපාතර්මෙන්තුව

A කොවස – වපුගගත රවනා පුශ්න හතරවම පිළිතුරු මෙම පතුයේම සපයන්න. (g = 10 m s⁻²)

 දිග 15 cm පමණ සහ ස්කන්ධය 200 mg පමණ වූ සිහින් ඒකාකාර කම්බියක දුවායේ ඝනත්වය නිර්ණය කිරීමට ඔබට නියමව ඇත. කම්බියේ විෂ්කම්භය මැනීම සඳහා (1) රූපයෙහි පෙන්වා ඇති මයිකොමීටර ඉස්කුරුප්පු ආමානය ඔබට සපයා ඇත.

(1) රූපය

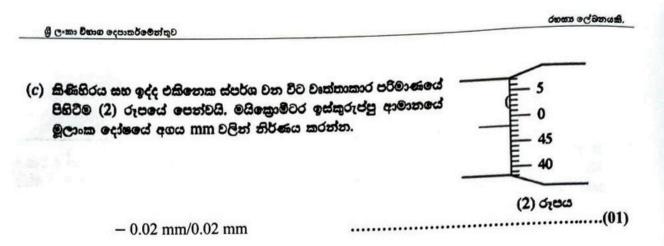
- (a) මයිකොමීටර ඉස්කුරුප්පු ආමානයේ A, B (පරිමාණ දෙක නොවේ) සහ C ලෙස සලකුණු කර ඇති කොවස් නම් කරන්න.

(විල්ල යන වචනය පමණක් බලන්න. උදා: ශිෂායෙක් විල්ල පරිමාණය ලියා ඇත්නම් එය පිළිගන්න)

(b) මයිකොමීටර ඉස්කූරුප්පු ආමානයේ ප්‍රධාන පරිමාණය සාදා ඇත්තේ 1 mm ක් දෙකට බෙදීමෙනි. වෘත්තාකාර පරිමාණයේ සමාන බෙදීම් 50ක් ඇත. B එක් වටයක් කරකැවීමේදී ප්‍රධාන පරිමාණයේ එක් බෙදීමකට සමාන අගයකින් කිණිහිරය සහ ඉද්ද අතර දුර වැඩිවීම හෝ අඩුවීම සිදු වේ.

(i) මයිකොමීටර ඉස්කුරුප්පු ආමානයේ අන්තරාලය mm වලින් කොපමණ ද?

0.5 mm

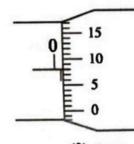

(mm ඒකකය නොමැතිවද ලකුණු පුදානය කරන්න; නමුත් ශිෂායෙකු වෙනත් ඒකක සමහ අගයන් ඉදිරිපත් කර ඇත්නම් නිවැරදි අගය සහ ඒකකය යන දෙකම බලන්න; අනෙකුත් පිළිතුරු සඳහා ද එම රීතියම යොදන්න)

(ii) මයිකොමීටර ඉස්කුරුප්පු ආමානයේ කුඩාම මිනුම mm වලින් කොපමණ ද?

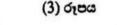
0.01 mm

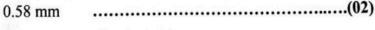
(භාගික අගයක් සඳහා ලකුණු නොමැත)

01 - භෞතික විදාහව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.



- (d) මූලාංක දෝෂය නිර්ණය කිරීමෙන් පසු කම්බියේ විෂ්කම්භය මැනීම සඳහා මයිකොමීටර ඉක්කුරුප්පු ආමානය භාවිත කරන්නේ කෙසේදැයි සඳහන් කරන්න.
 - (1) <u>C /දිදාල හිස ලිස්සා යන තුරු</u> හෝ තිදහසේ භුමණය වීමට පටන් ගන්නා තුරු හෝ ක්ලික් කිරීම පටන් ගන්නා තෙක්/ටික් ටික් ශබදයක් ඇසෙන තෙක් C / දිදාල හිස කරකවමින් කම්බිය ඉද්ද සහ කිනිහිරය අතර තබන්න. (01)


(e) මයිතොමීටර ඉස්කුරුප්පු ආමානවල C කොටස තිබීමේ අරමුණ කුමක් ද?


ඉද්ද තවදුරටත් චලනය වීම වැළැක්වීමට *හෝ* කම්බියට (මනින වස්තුවට) හානි වීම වැළැක්වීමට *හෝ* කම්බිය (මනින වස්තුව) මත අධික ලෙස තෙරපුමක්/පීඩනයක් ඇති නොකිරීමට(01)

(f) (i) ඉහත (c) හි සඳහන් මයිකොමීටර ඉස්කුරුප්පු ආමානය භාවිතයෙන් කම්බියේ එක් ස්ථානයක විෂ්කම්භය මනින විට වෘත්තාකාර පරිමාණයේ පිහිටීම (3) රූපයේ පෙන්වයි.

(1) මයිකොමීටර ඉස්කුරුප්පු ආමානයේ කියවීම mm වලින් කොපමණ ද?

01 - භෞතික විදහාව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

ලංකා වි	800 00	පාතර්මෙන්තුව	
---------	--------	--------------	--

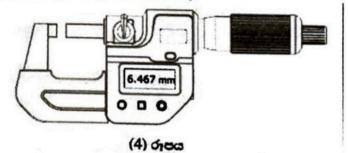
8

රහසා ලේබනයකි.

(ii) ඉහත (f) (i) (2) හි අගය භාවිතයෙන් කම්බියේ හරස්කඩ වර්ගඵලය (mm² වලින්) ගණනය කරන්න.

3 × 0.3².....(01)

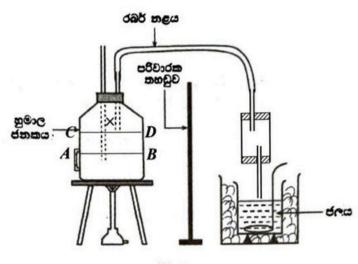
(3 හෝ
$$\pi$$
 හෝ $\frac{22}{7}$ ආදේශ කිරීම සඳහා)


	0.2	7 mm ² (01)
(g)	(i) කම්බියේ දුවායේ ඝනත්වය නිර්ණය	7 mm ²
	(1) (කම්බියේ) දිග	(01)
	(2) (කම්බියේ) ස්කන්ධය	

(ii) ඉහත (g) (i) හි සඳහන් මිනුම් ලබා ගැනීමට අවශා වඩාත්ම යෝගා මිනුම් උපකරණ නම් කරන්න.

(1)) මීටර කෝදුව				(01)				
				හෝ	(පරීඤ ණාගාර)	ඉලෙක්ටුොනික	තුලාවක්	හෝ	
4	රසාය	නික	තුලාවක්					(01)	

(තුලාව පමණක් පුකාශ කිරීම සඳහා ලකුණු නොමැත; කුඩාම මිනුම 100 mg වන බැවින් තෙදඬු තුලාව සඳහා ලකුණු නොමැත)


(h) කර්මාන්ත යෙදුම්වලදී භාවිත කරන ඉලෙක්ටොනික මයිකොමීටර ඉස්කුරුප්පු ආමානයක් (4) රූපයේ පෙන්වයි. මෙම ආමානයේ කුඩාම මිනුම mm වලින් කොපමණ ද?

0.001 mm

ශී ලංකා විභාග දෙපාතර්මෙන්තුව

2. මිශුණ තුමය භාවිත කර ජලයේ වාෂ්පීකරණයේ විශිෂ්ට ගුප්ත තාපය (L) නිර්ණය කිරීමට ඔබට නියමව ඇත. අසමපූර්ණ පරීක්ෂණාගාර ඇටවුමක් (1) රූපයේ පෙන්වයි. හුමාලය පිටනට ගැනීමට රබර් නළයක් භාවිත කරයි. භොදින් පරීවරණය කරන ලද තඹ කැලරීමීටරයක්, ජලය සහ තඹ මන්ථයක් ද සපයා ඇත.

(1) රුපය

 (a) (i) හුමාල ජනකයට ජලය වත් කළ යුතු ය. තිරස් රේඛාවක් භාවිතයෙන් හුමාල ජනකය තුළ ජලය පිරවිය යුතු සුදුසු ජල මට්ටම සලකුණු කරන්න.

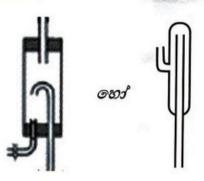
AB සහ CD අතර ඕනෑම තිරස් රේඛාවක්

.....(02)

(ii) හුමාල ජනකය තුළට උෂ්ණත්වමානයක් ඇතුල් කළ යුතුය. හුමාල ජනකය තුළ උෂ්ණත්වමානයේ බල්බය තිබිය යුතු සුදුසු පිහිටුම කුඩා කතිරයක් (x) භාවිතයෙන් සලකුණු කරන්න.

අඳින ලද ජල මට්ටමට ඉහලින් කනිරයක් ඇඳීම සඳහා(02) (උෂ්ණත්වමානයේ බල්බයේ නිවැරදි පිහිටීම පිළිගනු ලැබේ; ජල මට්ටමට පහළින් අඳින ලද කතිරයක් සඳහා ලකුණු නොමැත)

(iii) මෙම පරීක්ෂණයේදී නිවැරදිව මනින ලද හුමාලයේ උෂ්ණක්වය 100-0°C නොව 99-0°C විය. මෙයට හේතුව තුමක් විය හැකි ද?


(b) (i) සනීභවනය වූ හුමාලය කැලරි මීටරයේ ජලයට මිශුවීම වැලැක්වීමට ඔබ භාවිත කරන අයිතමය නම් කරන්න.

හුමාල හබකයක්

.....(02) (D()

01 - භෞතික විදහාව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

(ii) ඉහත (b) (i) හි සඳහන් අයිතමය නිවැරදි සම්බන්ධතාවය සහිතව (1) රූපයේ සුදුසු ස්ථානයේ ඇඳ පෙන්වන්න.

[නිවැරදි රූප සටහන සඳහා ලකුණු 01; රබර් නලයට නිවැරදි සම්බන්ධතාවය සඳහා ලකුණු 01; කැලරි මීටරයේ ජල මට්ටමට ඉහලින් නලයේ පහළ කෙළවර පිහිටීම සඳහා ලකුණු 01]

(පිටාර නළය අතාවශා නොවේ)

(c) පරීක්ෂණය සඳහා A සහ B යන උෂ්ණත්වමාන දෙකක් තිබේ.

A උෂ්ණත්වමානයේ පරාසය : –10 °C සිට 110 °C

B උෂ්ණත්වමානයේ පරාසය : –10 °C සිට 60 °C

කැලරිමීටර ජලයේ උෂ්ණත්වය මැනීමට භාවිත කළ යුත්තේ කුමන උෂ්ණත්වමානය ද?

B හෝ උෂ්ණක්ව පරාසය (−10 ℃ සිට) 60 ℃ (දක්වා)......(01)

(d) මෙම පරීක්ෂණයේදී ඔබ ගන්නා ස්කන්ධ මිනුම් මොනවා ද? එම මිනුම් අනුපිළිවෙළට දෙන්න.

- (1) (හිස්) කැලරිමීටරය සහ මන්ථයේ / කැලරිමීටරය අඩංගු දෑ සමඟ ස්කන්ධය
- (2) කැලරිමීටරය, මන්ථය සහ ජලයේ ස්කන්ධය
- (3) (හුමාලය එක් කළ පසු) පද්ධතියේ / මිශුණයේ මුළු/ අවසාන ස්කන්ධය

.....(03)

[අනුපිළිවෙළට ඇති නිවැරදි පිළිතුරු 03 සඳහා ලකුණු 03, නිවැරදි නමුත් අනුපිළිවෙලට නැති පිළිතුරු 03 සඳහා ලකුණු 02, අනුපිළිවෙලට ඇති නිවැරදි පිළිතුරු 02 ක් සඳහා ලකුණු 01]

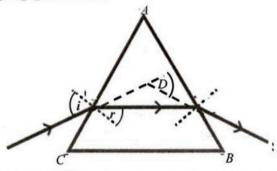
- (e) මෙම පරික්ෂණයේදී ජලයේ අවසාන උෂ්ණත්ව පාඨාංකය මැනීමට ඔබ ගන්නා පරීක්ෂණාත්මක පියවර මොනවා ද?
 - (1) ජලයට හුමාලය යැවීම නවත්වන්න.(01)
 - (2) හොඳින් <u>මන්ථනය</u> කර මිශුණයේ <u>ඉහළම/උපරිම උෂ්ණත්වය</u> ලබාගන්න

......(01)

ම් ලංකා විභාග දෙපාතර්මෙන්තුව

(f) කාමර උෂ්ණක්වය සහ ජලයේ ආරම්භක උෂ්ණක්වය පිළිවෙළින් θ සහ θ₁ වේ. අවට පරිසරය සමග සිදුවන කාප හුවමාරුව අවම කර ගැනීම සඳහා ජලයෙහි අවසාන උෂ්ණක්ව මනුම θ₂ හි අගය ලබාදෙන ප්‍රකාශනයක් θ₁ සහ θ ඇතුරෙන් ලියා දක්වන්න.

$$\theta - \theta_1 = \theta_2 - \theta$$
$$\theta_2 = 2\theta - \theta_1$$


.....(01)

(g) (i) මෙම පරීක්ෂණය සඳහා හඹ කැලරීමීටරයක් වෙනුවට විදුරු බීකරයක් භාවිත කළ හැකි ද? හැකිය/නොහැකිය (නිවැරදි පිළිතුර යටින් ඉරක් අඳින්න.)

.....(01)

(ii) ඉහත පිළිතුර සඳහා හේතුව දෙන්න.

- (h) මෙම කොටස නොසලකා හරින්න. (oi)
- පරීක්ෂණාගාර වර්ණාවලිමානයක් භාවිතයෙන් වීදුරු ප්‍රිස්මයක දුවායේ වර්තනාංකය නිර්ණය කිරීමට ඔබට අවශාව ඇත.
 - (a) රූපය (1) හි පෙන්වා ඇති ප්‍රිස්මයේ AC මුහුණත මත පතිත වී ප්‍රිස්මය හරහා අවම අපගමනයට ලක්වන ඒකවර්ණ කිරණයක ගමන් මාර්ගය අඳින්න. එසේම AC මුහුණතේදී කිරණයේ පතන කෝණය (i) සහ වර්තන කෝණය (r) සලකුණු කරන්න.

පුස්මය තුලින් සමමිතිකව (*CB* පෘෂ්ඨයට සමාන්තරව) ගමන් ගන්නා කිරණයක්. අවම වශයෙන් එක් ඊ හිසක් හෝ ඇඳ තිබිය යුතුයි.(01)

AC පෘෂ්ඨය මත i සහ r ලකුණු කිරීම.

01 - භෞතික විදහාව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

.....(01)

(b) කිරණයේ අවම අපගමන කෝණය (D) ඉහත (1) රූපයේ සලකුණු කරන්න. 1)

D කෝණය සලකුණු කිරීම

(c) පීස්ම දුවායේ වර්තනාංකය (n) සඳහා පුකාශනයක් පීස්ම කෝණය A සහ D ඇසුරෙන් ලියා දක්වන්න.

$$n = \frac{\sin\left(\frac{A+D}{2}\right)}{\sin\left(\frac{A}{2}\right)}$$

(d) වර්ණාවලිමානයේ දූරේක්ෂය සීරු මාරු කිරීම සඳහා අවශා පරීක්ෂණාත්මක පියවර දෙන්න.

(e) දීප්තිමක් සූතිකා බල්බයකින් ලැබෙන ආලෝක කදම්බයක් ප්‍රිස්ම මේසය මට්ටම් කිරීම සඳහා භාවිත කළ හැකි බවට ශිෂායෙක් තර්ක කරයි. ඔබ මෙයට එකඟ වන්නේ ද?

ඔව්/එකඟ වේ.

මෙයට හේතුව දෙන්න.

පිස්ම මෙසය මට්ටම කිරීම සඳහා ආලෝකයේ <u>පරාවර්තනය</u> භාවිතා කරන බැවින් දීප්තිමත් සූතිකා බල්බයක් භාවිතා කළ හැකිය(01) දි¹්ලලෝකය අ*ස්කර්ත්ය ගැන*න.

(f) වර්ණාවලිමානයේ සියලුම කොටස් සීරු මාරු කිරීමෙන් පසු ඒකවර්ණ ආලෝක කිරණයක් සඳහා අවම අපගමන පිහිටුම පරීක්ෂණාත්මකව ඔබ ලබා ගන්නේ කෙසේ ද?

<u>සෝඩියම්</u> (හෝ <u>රසදිය) පහනක්</u> භාවිත කරන්න.(01)

දුරේක්ෂය තුලින් බලමින් පතන <u>කෝණය වැඩිවන දිශාවට</u> පුිස්ම මේසය කරකවන්න.(01)

.....(01)

.....(02)

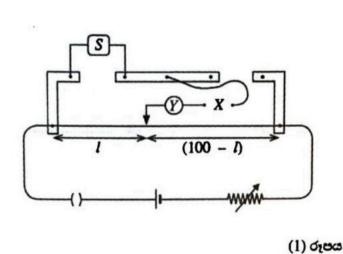
.....(01)

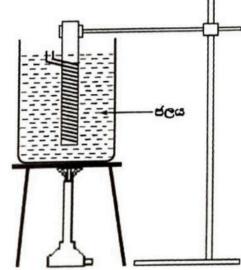
160 (g) දුරේක්ෂය අවම අපගමන පිහිටුමේ ස්ථාවර කළ විට වෘත්තාකාර Jule . පරිමාණයේ සහ වර්නියර් පරිමාණයේ පිහිටීම (2) රූපයේ පෙන්වා ඇත. මෙම පිහිටුමේ පාඨාංකය කොපමණ ද? (2) රූපය 144°15' (h) පිස්ම මෙසයෙන් පිස්මය ඉවත් කළ පසු දුරේක්ෂයේ ඍජු කියවීම 104°55′ ලෙස මනිනු ලැබේ. D හි අගය සොයන්න. මිනුම් ලබා ගන්නා විට වෘත්තාකාර පරිමාණයේ 360°ලකුණ හරහා ගමන් කර නොමැත.(01) $D = 144^{\circ}15' - 104^{\circ}55'$ (අන්තරය ගැනීම සඳහා) = 39° 20'(01) (i) පුස්මයේ කෝණය $A = 60^{\circ}00'$ නම් පුස්ම දුවායේ වර්තනාංකය (n) ගණනය කරන්න. (ඔබගේ ගණනය සඳහා පුකෘති සයින වගුව භාවිත කරන්න.) $(D + A)/2 = (39^{\circ}20' + 60^{\circ}00')/2$(01) (එකතු කිරීම සහ බෙදීම සඳහා) = 49°48 40' $n = \frac{\sin 49^{\circ} 48^{\prime}}{40^{\prime}}$ (01) (Zieżooa 237m)

ශී ලංකා විභාග දෙපාතර්මෙන්තුව

sin 30°

= 1.52 (1.51 - 1.53)


22

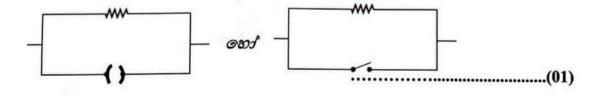

රහසා ලේඛනයකි.

(02) (O)

ශී ලංකා විභාග දෙපාතර්මෙන්තුව

4. මීටර සේතුවක් භාවිතයෙන් සිහින් කම්බියක දුවායේ ප්‍රත්රෝධයේ උෂ්ණත්ව සංගුණකය (α) නිර්ණය කිරීම සඳහා යොදා ගත හැකි පරීක්ෂණාත්මක සැකසුමක් (1) රූපයේ පෙන්වයි. දීග 5·0 m සහ විෂ්කම්භය 0·1 mm වූ විදයුත් පරිවරණය කළ ඒකාකාර කම්බියක් සිලින්ඩරාකාර ප්ලාස්ටික් දණ්ඩක් වටා ඔතා ඇත්තේ දඟරයක් සෑදෙන අයුරිනි. කම්බි දුවායේ ප්‍රත්රෝධකතාව 30 °C දී 1·5×10⁻⁸ Ω m වේ. සුදුසු S ප්‍රත්රෝධයක් සේතුවේ වම හිදැස හරහා සම්බන්ධ කොට ඇත.

(a) 30°C දී කම්බි දඟරයේ පුතිරෝධය සොයන්න. (π=3 ලෙස ගන්න.)


(01)	$R = \rho \frac{l}{A}$
	$= 1.5 \times 10^{-8} \frac{5}{\pi \left(\frac{0.0001}{2}\right)^2}$
(01)	$= 10.0 \Omega$

(b) රූපය (1) හි 'Y' ලෙස නම් කොට ඇති මිනුම් උපකරණය කුමක් ද?

මැද බිංදු ගැල්වනෝමීටරය

.....(01)

(c) (i) රූපය (1) හි 'X' හිදැස හරහා සම්බන්ධ කළ යුතු පරිපථයේ රූප සටහනක් පහත දී ඇති ඉඩෙහි අඳින්න.

01 - භෞතික විදාහව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

ශී ලංකා විභාග දෙපාතර්මෙන්තුව

කෙටි දිග

රහසා ලේබනයකි

(ii) ඔබ ඉහත (c) (i) හි අඳින ලද පරිපථයේ අවශාතාව කුමක් ද?

ගැල්වනෝමීටරය (අධි ධාරා වලින්) ආරක්ෂා කිරීමට *හෝ* ගැල්වනෝමීටරය හරහා ඉහළ ධාරා ගමන් කිරීම වැළැක්වීමට *හෝ* ගැල්වනෝමීටරය පිළිස්සීම(01) වැළැක්වීමට.

(d) කම්බි දඟරය මීටර් සේතුවට සම්බන්ධ කිරීමට තඹ කම්බි භාවිත කළ යුතුය. තුමන ආකාරයේ කම්බි මේ සඳහා සුදුසු ද?

.....(01)

විශාල හරස්කඩය / විශාල හරස්කඩ වගර්ඵලය / ඝනකම් කම්බි(01)

(e) මෙම පරීක්ෂණයට යොදා ගන්නා අනෙකුත් අතාවශා උපකරණය සහ අයිතමය මොනවා ද?

උපකරණය	:	උෂ්ණත් වමා නය	(01)
අයිතමය	:	මත්ථය	(01)

(f) (i) දී ඇති heta (°C) උෂ්ණත්වයකදී දගරයේ පුතිරෝධය $R_{ heta}$ සහ මීටර් සේතු කම්බියේ අනුරුප සංකූලන දිග l (cm) ද නම්, $\frac{R_{\theta}}{S}$ සඳහා පුකාශනයක් l ඇසුරෙන් ලියා දක්වන්න. මීටර් සේතු කම්බියේ ආත්ත ශෝධන නොසලකා හරින්න.

$$\frac{R_{\theta}}{s} = \frac{100-l}{l} \tag{01}$$

(ii) පුතිරෝධය $R_{ heta}$ සඳහා පුකාශනයක් $lpha, \ heta=0^\circ \mathbb{C}$ දී පුතිරෝධය R_0 සහ heta ඇසුරෙන් ලියා දක්වන්න.

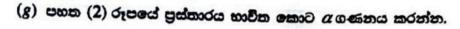
$$R_{\theta} = R_0 (1 + \alpha \theta)$$

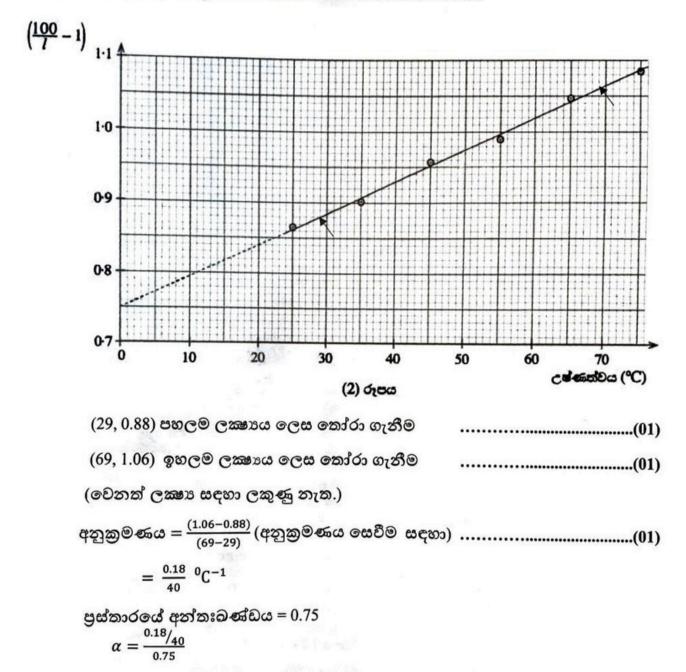
(iii) ඉහත (f) (i) සහ (ii) හි ලියා ඇති පුකාශන ඒකාබද්ධ කිරීමෙන් heta එදිරියෙන් $\left(\frac{100}{J}-1
ight)$ සරල රේබා පුස්තාරය ඇඳීම සඳහා අවශා පුකාශනය ලබා ගන්න.

(iv) ඉහත (f) (iii) හි ලියන ලද පුකාශනයේ පරාමිති භාවිත කරමින් පුස්තාරයේ අනුතුමණය (m) සහ අන්තංඛණ්ඩය (c) සඳහා පුකාශන ලියා දක්වන්න.

$$m = \alpha \frac{R_0}{S} \tag{01}$$

$$c = \frac{R_0}{S} \tag{01}$$


01 - භෞතික විදහාව (ලකුණු දීමෙ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.


ම් ලංකා විභාග දෙපාතර්මෙන්තුව

රහතා ලේබනයකි.

(v) α සඳහා පුකාශනයක් m සහ c ඇසුරෙන් ලියා දක්වන්න.

$$\alpha = \frac{m}{c} \tag{01}$$

 $\alpha = 6.0 \times 10^{-3} \ ^{0}C^{-1} \ (0.006 \ ^{0}C^{-1})$

(වැරදි ඒකකය සඳහා ලකුණු 01 ක් අඩු කරන්න; K ඒකකය නිවැරදි නොවේ) {ශිෂායෙක් සරල <u>රේඛාවේ</u> වෙනත් බණ්ඩාංක ගෙන α සඳහා නිවැරදි අගය ලබාගෙන ඇත්නම් ලකුණු 03 ක් දෙන්න. එනම් අනුකුමණය ගණනය කිරීම හා අවසන් පිළිතුර}

01 - භෞකික විදනාව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

.....(02)

හි ලංකා විහාග දෙපාතර්මෙන්තුව

රහසා ලේබනයකි.

පුශ්න **ගහරකව** පමණක් පිළිතුරු සපයන්න. ($g = 10 \,\mathrm{m \, s^{-2}}$)

 සටහන: උදාහරණයක් වශයෙන් 65210 සංඛාාව දශම ස්ථාන දෙකකට වැටයූ පසු 6·52 × 10⁴ ලෙස විදාාත්මක අංකනයෙන් (scientific notation) ලිවිය හැක.

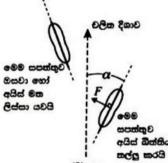
5. පහත ජේදය කියවා පුශ්නවලට පිළිතුරු සපයන්න.

අයිස් මත ලිස්සා යැමේදී (1) රූපයේ පෙන්වා ඇති අයිස් මත ලිස්සන සපත්තුවක (skate) තලය (blade) අයිස් මත පීඩනයක් යොදා තුනී අයිස් ස්තරයක් දිය කොට තලය සහ අයිස් අතර ස්නේහනය (lubrication) සපයයි. මෙය 'පීඩන දියවීම' ලෙස හැඳින්වේ. සපත්තුවේ තලයේ පහළ පෘෂ්ඨයේ දිග 30 cm වන අතර පළල 1 mm වේ. අයිස් මත ලිස්සන එක් සපත්තුවක් මත තම බර යොදන මිනිසෙකුට සාමානා වායුගෝලීය පීඩනය මෙන් 20 ගුණයක් දක්වා පීඩනයක් ඇති කළ හැකිය. අයිස් සහ තලය අතර ඝර්ෂණ සංගුණකය මුළුමුනින්ම පාහේ ශුනා වේ. එබැවින් ඉදිරියට යාමට ඇති එකම මග වන්නේ (2) රූපයේ දැක්වෙන පරිදි සපත්තුවේ තලය මගින් දිය නොවු අයිස් බීන්තිය තල්ලු කිරීමයි.

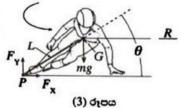
අයිස් මක ලිස්සා යන්නා තම දකුණු පාදය පිටුපසින් තබා තල්ලු කරන විට අයිස් මගින් සපත්තු කලය මත F බලයක් යෙදේ. චලිත දිශාවට ඇති F බලයේ සංරචකය මගින් අයිස් මත ලිස්සා යන්නා ඉදිරියට කල්ලු කරයි. ඒ අතර සපත්තුව සහිත ඔහුගේ වම පාදය ඔසවා තබා ගැනීම හෝ අයිස් පෘෂ්ඨය මත ලිස්සා යෑම සිදු කරයි. අයිස් මත ලිස්සා යන්නා ඉදිරියට යන විට ඔහු ඉහත කියාව වම පාදයට මාරු කොට එයින් අයිස් තල්ලු කොට දකුණු පාදය ඔසවා තබා ගනියි. මෙම කියාවලිය අඛණ්ඩව නැවත නැවතත් සිදු කෙරේ.

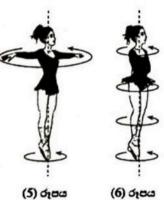
ස්කන්ධය m වූ අයිස් මත ලිස්සා යන්නා තිරස් අයිස් පෘෂ්ඨයක් මත වෘත්නාකාර මාර්ගයක නියත වේගයකින් ගමන් කරන විට ඔහු මත කියාකරන බල (3) රූපයේ දැක්වේ.

මෙහි G යනු අයිස් මත ලිස්සා යන්නාගේ ස්කන්ධ කේන්දුය ද, P යනු සපත්තුවක් සහ අයිස් පෘෂ්ඨය අතර ස්පර්ශ ලක්ෂාය ද, L යනු P සහ G අතර දුර ද වේ. අයිස් මගින් සපත්තුව මත කියාත්මක වන බලයේ තිරස් සහ සිරස් සංරචක පිළිවෙළින් $F_{\rm X}$ සහ $F_{\rm Y}$ වේ. වෘත්තාකාර මාර්ගයේ අරය R වේ.


අයිස් මත ලිස්සා යන්නෙකුගේ බැමුම් (spin) චලිතයක් සාක්ෂාත් කර ගැනීම සඳහා (4) රූපයේ පෙන්වා ඇති ඉදිරි කෙළවරේ කුඩා දැති සහිත කූරු ඇති විශේෂික වූ කලයක් භාවත කරයි. මෙම දැති සහිත කූරු අයිස් තුළට හාරා අවශා වනාවර්තය ලබා ගැනීම මගින් බැමුම් සිදු කර ගනී.

(a) 'පීඩන දියවීම' යන්නෙන් අදහස් කරන්නේ කුමක් ද?


- (b) (i) සාමානා සපක්තු පැළඳ 60 kg ක ස්කන්ධයක් ඇති පුද්ගලයෙකු එක් පාදයකින් අයිස් පෘෂ්ඨයක් මතුපිට සිටගෙන සිටින්නේ නම්, ඔහු අයිස් පෘෂ්ඨය මත ඇති කරන පීඩනය කොපමණ ද? එක් සපක්තුවක පතුලේ පෘෂ්ඨිය වර්ගඵලය 300 cm² වේ.
 - (ii) ඔහු සාමානා සපත්තුව වෙනුවට අයිස් මත ලිස්සන සපත්තුවක් පැළඳ සිටි නම් ඔහු මගින් අයිස් පෘෂ්ඨය මත යෙදෙන පීඩනය කොපමණ ද? ජේදයෙන් අයිස් මත ලිස්සන සපත්තු තලයේ මානයන් ලබා ගන්න. තලයෙහි පහළ පෘෂ්ඨයේ හැඩය සාජුකෝණාසාකාර බව උපකල්පනය කරන්න.
 - (iii) එනයින් ඉහස (b) (ii) හි ලබාගත් පීඩනය වායුගෝලීය පීඩනය මෙන් 20 ගුණයක් බව පෙන්වන්න. (වායුගෝලීය පීඩනය 1·0×10⁵ Pa වේ.)
- (c) අයිස් මත ලිස්සා යන්නොක් අයිස් මතුපිටක් මත ඉදිරියට ගමන් කරන්නේ කෙසේ ද?
- (d) (i) අයිස් මත ලිස්සා යන්නාගේ චලිතයේ දිශාවට යොමුවන බලයේ සංරචකය තුමක් ද? ඔබගේ පිළිතුර F සහ α ඇසුරෙන් ලියා දක්වන්න.
 - (ii) α කෝණය ශතා වේ තම් ඔහුට ඉදිරියට යා හැකි ද? ඔබගේ පිළිතුරට හේතුව දක්වන්න.



(4) 0200

ශී ලංකා විභාග දෙපාතර්මෙන්තුව

- (e) (i) නොනවත්වා පාද මාරු කිරීම මගින් යෙදෙන බලයේ සාමානාය 180 N නම් චලික දිශාව ඔස්සේ 60 kg ක ස්කන්ධයක් ඇති අයිස් මත ලිස්සා යන්නාගේ ත්වරණය (a) නිර්ණය කරන්න. α = 30° ලෙස ගන්න. වෙනත් ප්රිරෝධක බල ඔහු මත ක්‍රියා නොකරන බව උපකල්පනය කරන්න.
 - (ii) ඔහු නිසලතාවයෙන් ගමන් අරඹා 5 s තුළ ත්වරණය වූ පසු ඔහුගේ වේගය (v) කොපමණ ද?
- (f) වෘත්තාකාර මාර්ගයක ගමන් ගන්නා අයිස් මත ලිස්සා යන්නාගේ වේගය $v', v' = \sqrt{\frac{gR}{\tan \theta}}$ මගින් දෙනු ලබන බව (3) රූපය භාවිත කරමින් පෙන්වන්න.
- (g) රූපය (4) හි පෙන්වා ඇති තලයේ දැකි සහිත කුරු කිබීමේ අරමුණ කුමක් ද?
- (h) ස්කන්ධය 60 kg වන අයිස් මත නර්තනයේ යෙදෙන සැහැත්තියක් (5) රූපයේ පෙන්වා ඇති පරිදි තිරස් අතට දීගු කර ඇති දැන් සහිතව 60 rpm ක කෝණික වේගයකින් සිරස් අක්ෂයක් වටා බැමෙයි. ඉන් පසුව (6) රූපයේ දැක්වෙන පරිදි දැන් ඇගේ සිරුරව ඉතා සම්පව ගෙන එමින් ඇය තම දැන් සම්පූර්ණයෙන් හකුලා ගනී. දීගු කරන ලද දැන් එක එකෙහි දීග 60 cm සහ ස්කන්ධය 7kg බැගින් වූ ඒකාකාර දඬු ලෙස සැලකිය හැකි ය. දැන් නොමැතිව සිරුරේ ඉතිරි කොටස ස්කන්ධය 46 kg සහ අරය 20 cm වන තත සිලින්වරයක් ලෙස සැලකිය හැකිය. සම්පූර්ණයෙන් හතුලා ගන්නා ලද දැක් සහිත ශරීරය ස්කන්ධය 60 kg සහ අරය 20 cm වන තත සිලින්ඩරයක් ලෙස සැලකිය හැකි ය. ස්කන්ධය M සහ දීග L වන දණ්ඩත, දණ්ඩට

ස්කන්ධය M සහ අරය R වන ඝන සිලින්ඩරයක මධා අක්ෂය වටා අවස්රීති සූර්ණය 1/2 MR² මගින් දෙනු ලබයි. (π=3 ලෙස ගන්න.)

ලම්බකව එහි එක් කෙළවරක් වටා අවස්ථිකි සූර්ණය ½ ML² මගින් දෙනු ලබයි.

 $= 2 \times 10^4 \text{ N m}^{-2}$

- (i) නර්තනයේ යෙදෙන තැනැත්තියගේ දැක් සම්පූර්ණයෙන් දිගු කොට ඇති විට හුමණ අක්ෂය වටා ඇයගේ මුළු අවස්ථිති සූර්ණය නිර්ණය කරන්න. හුමණ අක්ෂය හා උරහිස් සන්ධිය අතර දුර නොසලකා හරින්න.
- (ii) ඇගේ දැත් සම්පූර්ණයෙන් හකුලා ගෙන ඇති විට හුමණ අක්ෂය වටා ඇයගේ මුළු අවස්ථිති සූර්ණය නිර්ණය කරන්න.
- (iii) එනයින් ඇගේ දැත් සම්පූර්ණයෙන් හකුලා ගෙන ඇති විට ඇයගේ කෝණික වේගය rpm වලින් ගණනය කරන්න.
- (iv) ඉහත (h) (iii) හි පිළිතුර සොයා ගැනීමට ඔබ භාවිත කළ සංස්ථිති නියමය නම් කරන්න.
- (v) ඇයගේ ආරම්භක සහ අවසාන භුමණ චාලක ශක්තීන් ගණනය කරන්න. භුමණ චාලක ශක්තියේ ඇති වූ වෙනස ඔබ පහදා දෙන්නේ කෙසේ ද?
- (vi) නිසලතාවයෙන් පවත් ගෙන 60 mm කෝණික වේගයක් අයත් කර ගැනීමට ඇයට 10 s ගතවේ නම්, අයිස් මගින් දැති සහිත කූරු මත යෙදිය යුතු වනාවර්තය කොපමණ ද? කි්යාවලිය පුරාම ඇයගේ කෝණික ත්වරණය නියත යැයි උපකල්පනය කරන්න.

(a) අයිස් මතුපිටක් මත <u>පීඩනය යොදා තුනී අයිස් ස්තරයක් දිය කිරීම</u>(01)

(b) (i) යොදන පීඩනය = $\frac{60 \times 10}{300 \times 10^{-4}}$

.....(01)

(ii) අයිස් මත ලිස්සන සපත්තුවෙන් යොදන පීඩනය = $\frac{60 \times 10}{30 \times 10^{-2} \times 10^{-3}}$ (01)

(නිවැරදි ආදේශය සඳහා)

 $= 2 \times 10^6 \,\mathrm{N}\,\mathrm{m}^{-2}$ (01)

01 - භෞතික විදහාව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

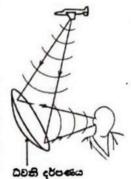
රහසා ලේබනයකි.

ශී ලංකා විභාග දෙපාතර්මෙන්තුව

(c) අයිස් මත ලිස්සන සපත්තුවේ තලයෙන් දිය නොවූ අයිස් බිත්තිය තල්ලු කිරීමෙනි(01)(01) (d) (i) $F_1 = F \sin \alpha$ (ii) නොහැකිය එවිට වලනය වන දිශාව ඔස්සේ ඇති බලය/ බලයේ සංරචකය ශුනා වේ.(01) (e) (i) අයිස් මත ලිස්සා යන්නාට F = ma යෙදීමෙන්(01) $180 \times \sin 30 = 60 \times a$ (නිවැරදි ආදේශය සඳහා) ...(01) $a = 1.5 \text{ m s}^{-2}$ (ii) v = u + at යෙදීමෙන් ...(01) $v = 1.5 \times 5$ (ආදේශය සඳහා)(01) $= 7.5 \text{ m s}^{-1}$ $(f) \rightarrow F = ma$ යෙදීමෙන් $F_x = m \frac{v^2}{p}$(01)(01) ඵලෙසම $F_y = mg$ $\therefore \frac{F_y}{F_z} = \frac{gR}{v^2}$ G වටා සුණර් ගැනීමෙන්, $F_x imes L \sin heta = F_y imes L \cos heta$ (Zeber afosoni sombo Fy = tan 2 @ Ow Our zonine Orgz Fx szion.) $\therefore \frac{F_y}{F_y} = \tan\theta$ $v = \sqrt{\frac{gR}{\tan\theta}}$

රහසා ලේබනයක්

ශී ලංකා විභාග දෙපාතර්මෙන්තුව


(g) බැමුම් චලිතයක් සාක්ෂාත් කර ගැනීම සඳහා.(01) (*h*) (i) දැත් දෙකේ අවස්ථිති සූණර්ය = $2 \times \frac{1}{3} \times 7 \times 0.6^2$ (01) (නිවැරදි ආදේශය සඳහා) $= 1.68 \text{ kg m}^2$ ශරීරයේ අවස්ථිති සූණර්ය = $\frac{1}{2} \times 46 \times 0.2^2$(01) (නිවැරදි ආදේශය සඳහා) $= 0.92 \text{ kg m}^2$ ඇගේ මුළු අවස්ථිති සූණූර්ය = 1.68 + 0.92(01) (එකතු කිරීම සඳහා) $= 2.6 \text{ kg m}^2$(01) (ii) ඇගේ දෑත් සමපූණර්යෙන් හකුලාගෙන ඇතිවිට අවස්ථිති සූණර්ය $=\frac{1}{2} imes 60 imes 0.2^2$ $= 1.2 \text{ kg m}^2$(01) (iii) දෑත් සම්පූණර්යෙන් හකුලාගෙන ඇතිවිට කෝණික වේගය (rpm වලින්) $=\frac{2.6\times60}{1.2}$(01) (ආදේශය සඳහා) = 130 rpm(01) (iv) කෝණික ගමාතා සංස්ථිතිය(01) (v) 60 rpm = 1 තත්පරයට වට ආරම්භක භුමණ වේගය rad s $^{-1}$ වලින් = 2 × 3 × 1 $= 6 \text{ rad s}^{-1}$

01 - භෞතික විදාහව (ලකුණු දීමෙ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

රහසා ලේබනයකි.

ශී ලංකා විභාග දෙපාතර්මෙන්තුව

- 6. (a) ධ්වනි ප්‍රභවයක් මගින් දී ඇති ලක්ෂායක ඇති කරන ධ්වනි තිව්නාව / සහ ශ්‍රවානා දේහලීය /₀ නම්, එම ලක්ෂායේදී ධ්වනි නිව්නා මට්ටම (β) සමීකරණයක් මගින් අර්ථ දක්වන්න.
 - (b) ගුවන් යානයක එන්ජිමක් මගින් නිකුත් කරන ධ්වනි තීවුතාව යම් ලක්ෂායකදී 2·0×10⁻² W m⁻² වේ.
 - I0=1.0×10⁻¹² Wm⁻² සහ log 2=0-3 ලෙස ද log(*ab*)=log(*a*)+log(*b*) ලෙස ද භාවිත කළ හැක.
 - (i) එම ලක්ෂායේදී ධ්වති කිවුනා මට්ටම සොයන්න.
 - (ii) ගුවන් යානයට එන්ජින් දෙකක් ඇත්නම්, එම ලක්ෂායේදීම සම්පූර්ණ ධ්වනි කීවුනා මට්ටම කොපමණ ද? ගුවන් යානයේ එන්ජින් දෙකේ සිට අදාළ ලක්ෂාය සම දුරකින් පිහිටා ඇතැයි සලකන්න.
 - (c) (i) දෙවන ලෝක සංගාමය ආරම්භක සමයේදී, රේඩාර් පහසුකම් නොමැති වූ අතර, ඒ නිසා ගුවන් යානා අනාවරණය කර ගැනීම සඳහා ගුවන් යානා මගින් නිපදවන ධ්වති තරංග භාවිත කරන ලදී. මිනිස් කණක් මගින් ගුවන් යානයක් අනාවරණය කර ගැනීම සඳහා ධ්වනි තීවුතා මට්ටම අවම තරමින් 30 dB විය යුතු නම් ගුවන් යානය මගින් කණෙහි ජනිත කළ යුතු අනුරූප අවම ධ්වනි තීවුතාවය සොයන්න.
 - (ii) ධවති තරංග පරාවර්තනය කිරීමට සහ නාභිගත කර එය හඳුනාගැනීමේ සංචේදීතාවය වර්ධනය කර ගැනීමට ධවති දර්පණ (acoustic mirrors) භාවිත විය. රූපයේ පෙන්වා ඇති පරිදි සඵල වර්ගඵලය 4 m² වූ ධ්වති දර්පණයක් මගින් සඵල වර්ගඵලය 10 cm² වූ කණක් මතට ධවතිය එකරාශි කරයි. ගුවත් යානයක් හඳුනාගැනීම සඳහා ධ්වති දර්පණයේ පනනය විය යුතු අවම ධ්වති තිවුතාවය කොපමණ විය යුතු ද? දර්පණය මගින් ධ්වති ශක්තිය අවශෝෂණය කිරීම නොසලකා හරින්න. ධ්වති දර්පණයේ සිට කණ දක්වා පුගමනය වීමේදී ධ්වනි ශක්තියේ භානියක් සිදු නොවන බව උපකල්පනය කරන්න.

01 - භෞතික විදාහව (ලකුණු දීමේ පරිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

(a)

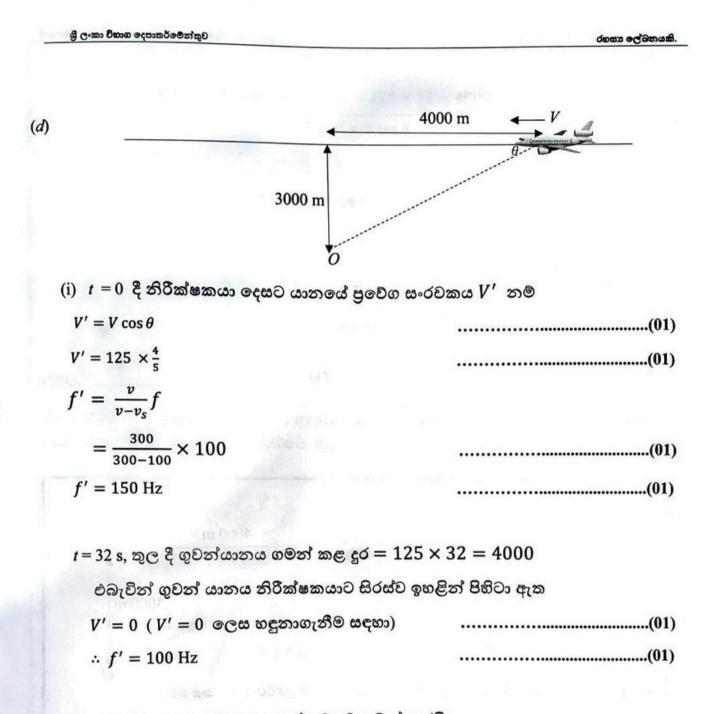
(

- (iii) ගුවන් යානයක් තම එන්ජින් මගින් 480 W ධවනි ක්ෂමතාවක් ජනනය කරයි. ඒකාකාර ගෝලීය ධ්වනි වනාප්තියක් උපකල්පනය කරන්න. (π=3 ලෙස ගන්න.)
 - (1) ගුවන් යානයේ සිට කණ දක්වා ප්‍රගමනය වීමේදී ධ්වනි ශක්තියෙන් 95% ක් වායුගෝලය අවශෝෂණය කර ගනි නම් ධ්වනි දර්පණය නොමැති විට ගුවන් යානය අනාවරණය කර ගත හැකි උපරිම දුර ඉහත (c) (i) හි ලබාගත් අගය භාවිත කොට සොයන්න. (√5 =2·24 ලෙස ගන්න.)
 - (II) ගුවන් යානයේ සිට ධිවනි දර්පණය දක්වා පුගමනය වීමේදී ධ්වනි ශක්තියෙන් 99.9% ක් වායුගෝලය අවශෝෂණය කර ගනී නම් ධවනි දර්පණය ඇති විට ගුවන් යානය අනාවරණය කර ගත හැකි උපරිම දුර ඉහත (c) (ii) හි ලබාගත් අගය භාවිත කොට සොයන්න. ධ්වනි දර්පණයේ සිට කණ දක්වා පුගමනය වීමේදී ධවති ශක්තියේ හානියක් සිදු නොවන බව උපකල්පනය කරන්න.
- (d) පොළොවේ සිටින ගුවන් නිරීක්ෂකයෙකු, ඔහුගේ හිසට ඉහළින් වැටී ඇති සරල රේඛීය පථයක, පොළොවට සමාන්තරව, පොළොව මට්ටමේ සිට 3000 m සිරස් උසකින් 125 m s⁻¹ පුවේගයකින් පියාසර කරන ගුවන් යානයක් හඳුනා ගනී. කාලය t = 0 හිදී නිරීක්ෂකයාව ගුවන් යානයේ සිට ඇති නිරස් දුර 4000 m වේ. ගුවන් යානය මගින් නිකුත් කරන ධ්වනියේ සංඛානතය 100 Hz වේ. වාතය තුළදී ධ්වනි වේගය 300 ms⁻¹ ලෙස උපකල්පනය කරන්න.
 - (i) t = 0 s, t = 32 s සහ t = 64s කාල අගයන් සඳහා පොළොවේ සිටින පුද්ගලයාට ඇසෙන ධ්වනියේ සංඛානය සොයන්න.
 - (ii) ඉහත අවස්ථා සඳහා කාලය (t) ට එදිරිව නිරීක්ෂිත සංඛාාතය (f) හි විචලනය පෙන්වීමට දළ සටහනක් අඳින්න.
- (e) අතිධ්වනික (supersonic) ජෙට් යානයක් u පුවේගයකින් සරල රේඛීය මාර්ගයක 3000 m උසකින් පොළොවට සමාන්තරව පියාසර කරයි. එම උසෙහිදී වාතයේ ධ්වනි වේගය v වේ.
 - (i) u < v, u = v සහ u > v යන අවස්ථාවන් සඳහා ජෙට් යානයෙන් විමෝචනය වී සම්පේෂණය වන වෘත්තාකාර තරංග පෙරමුණු ඇඳ පෙන්වන්න.
 - (ii) u > v තත්වය සඳහා ජෙට් යානයක මැක් අංකය M (Mach number), $M = \frac{u}{v}$ ලෙස ද මැක් කෝණය α (Mach angle -මැක් කේතුවේ ශීර්ෂ කෝණයෙන් හරි අඩකි), $\sin \alpha = \frac{v}{u}$ ලෙස ද අර්ථ දැක්වේ. ජෙට් යානයේ පුවේගය මැක් 2 (Mach 2) නම්, නිරීක්ෂකයාව සෘජුවම ඉහළින් ජෙට් යානය ගමන් කර කොපමණ වේලාවකට පසුව ඔහුට ස්වනික ගිගුරුම ඇසෙනු ඇති ද? එම උසෙහිදී ධවනියේ වෙගය $v = 300\,\mathrm{m\,s^{-1}}$ වේ. $\sqrt{3}\,= 1.73$ ලෙස ගන්න.

$$\beta = 10 \log \left(\frac{l}{l_0}\right) \tag{02}$$

$$I = 10^{-9} \,\mathrm{W} \,\mathrm{m}^{-2}$$

01 - භෞතික විදාහව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.


31

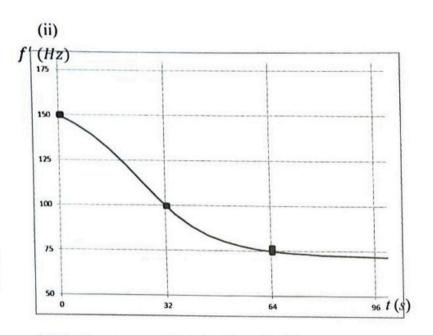
.....(01)

ශී ලංකා විභාග දෙපාතර්මෙන්තුව

(ii) දර්පණයෙහි මුහුනත මත තිබියයුතු අවම ශබ්ද තීවුතාවය I' නම්(01) $I' \times 4 = 10^{-9} \times 10 \times 10^{-4}$(01) $I' = 2.5 \times 10^{-13} \text{ W m}^{-2}$ (iii) (I) දර්පණය නොමැතිව ගුවන්යානයක් නිරීක්ෂණය කළහැකි උපරිම දුර d නම 0.05(02) $\frac{480}{4\pi(d)^2} \times 0.05 = 10^{-9}$ $(rac{480}{4\pi(d)^2}$ සඳහා ලකුණු 01; ඉතිරි ආදේශය සඳහා ලකුණු 01) $d^2 = 40 \times 0.05 \times 10^9$ $= 4 \times 5 \times 10^8$ $d = 2\sqrt{5} \times 10^4 = 2 \times 2.24 \times 10^4$(01) $d = 4.48 \times 10^4 \text{ m} (44.8 \text{ km})$ (II) දර්පණය ආධාරයෙන් ගුවන්යානයක් නිරීක්ෂණය කළහැකි උපරිම දුර d^\prime නම

01 - භෞතික විදනාව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

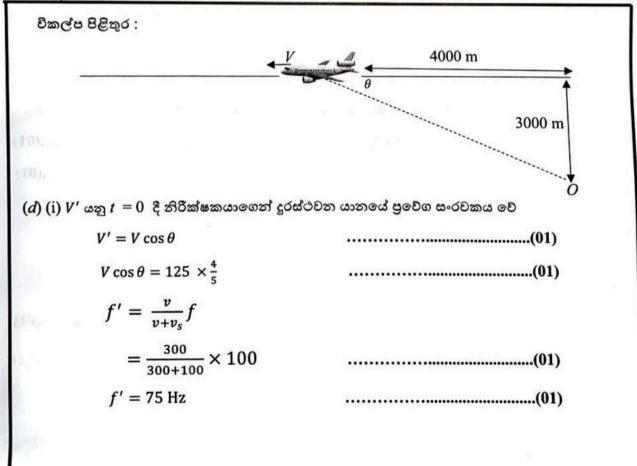
t = 64 s, දී යානය නිරීඤාකගෙන් ඉවතට ගමන් කරයි


$$f' = \frac{v}{v + v_s} f$$
$$= \frac{300}{300 + 100} \times 100$$

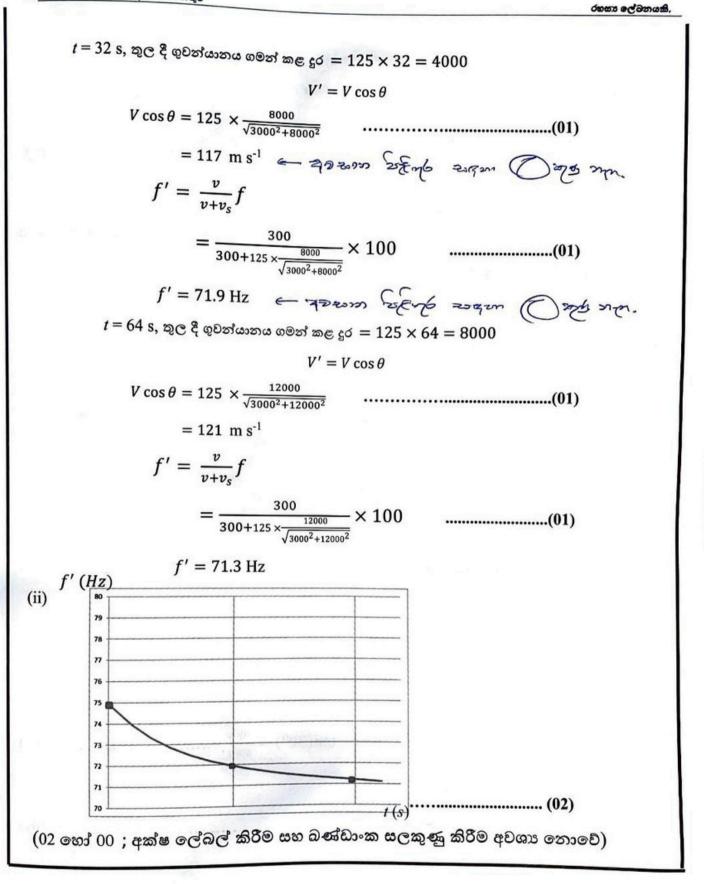
 $f' = 75 \, \text{Hz}$

.....(01)

01 - භෞතික විදනාව (ලකුණු දීමෙ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

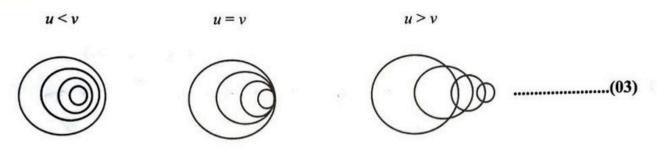

රහසා ලේඛනයකි.

ජී ලංකා විභාග දෙපාතර්මෙන්තුව

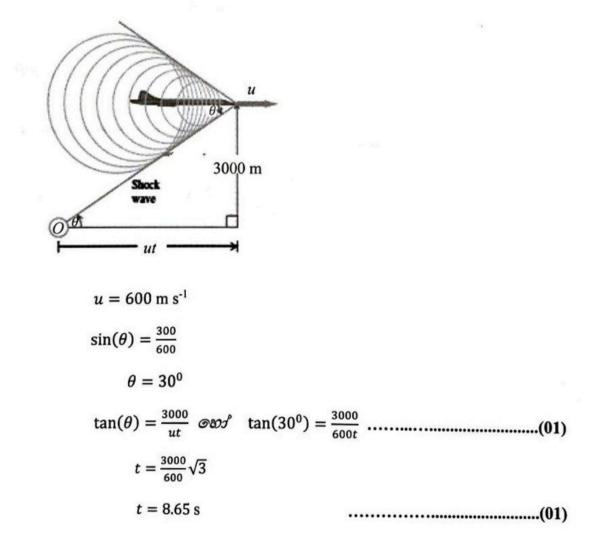

.....(02)

(නිරීක්ෂකයා දෙසට ළහා වන අවස්ථාවේ හැඩය සඳහා ලකුණු 01; ඉවතට යන අවස්ථාවේ හැඩය සඳහා ලකුණු 01; අක්ෂ ලේබල් කිරීම සහ ඛණ්ඩාංක සලකුණු කිරීම අතාාවශා නොවේ)

01 - භෞතික විදාහව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.


ශී ලංකා විභාග දෙපාතර්මෙන්තුව

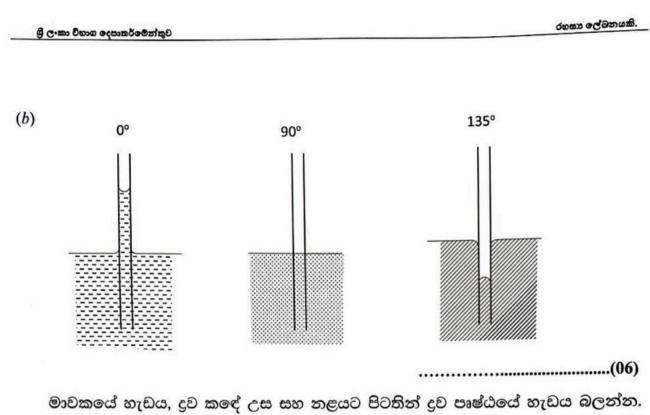
01 - භෞතික විදනාව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.


ශී ලංකා විභාග දෙපාතර්මෙන්තුව

(e) (i)

(එක් එක් නිවැරදි හැඩය සඳහා ලකුණු 01; රූප සටහනකට අවම වශයෙන් රවුම තුනක්වත් තිබිය යුතුය)

(ii)


01 - භෞතික විදාහව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

රහතා ලේබනයකි.

- 7. (a) පෘෂ්ඨික ආනති සංගුණකය අර්ථ දක්වන්න.
 - (b) දිගු විදුරු කේශික නළ තුනක් හරි අඩක් දුව තුළ පවතින පරිදි ස්පර්ශ කෝණය (i) 0°, (ii) 90° සහ (iii) 135° වූ වෙනස් දුවවල සිරස් අතට ගිල්වා ඇත. එක් එක් අවස්ථාව සඳහා නළය තුළ දුව මාවකයේ හැඩය, දුව කදේ උස සහ නළයෙන් පිටත එය සමීපයේ දුව මතුපිට හැඩය පෙන්වන දළ සටහනක් අඳින්න.
 - (c) පෘෂ්ඨික ආතති සංගුණකය Tවූ දුවයක දුව පෘෂ්ඨය සිදුරු නොවී එය මතුපිට පාවිය හැකි කුඩා ඝන ගෝලයක උපරිම අරය (r_m) සඳහා පුකාශනයක් වයුත්පන්න කරන්න. ගෝලයේ දුවායේ ඝනක්වය β වන අතර එය දුවයේ ඝනක්වයට වඩා වැඩි වේ. ගෝලය සාදා ඇති දුවාය හා දුවය අතර ස්පර්ශ කෝණය ශූනා යැයි උපකල්පනය කරන්න. අරය rවූ ගෝලයක පරිමාව $\frac{4}{3}$ π^3 වේ.
 - (d) සෙංගමාලය ඇති රෝගීන් හඳුනා ගැනීම සඳහා මුතාවල පිත් ලවණ ඇති බව හඳුනා ගැනීමට තේ (Hay) ගේ පරීක්ෂණය සිදු කරයි. පිත් ලවණ මගින් මුතාවල පෘෂ්ධික ආතතිය අඩු කරයි. හේ ගේ පරීක්ෂණය සඳහා ගන්නා ලද මුතා සාම්පලයක් මතට ඒකාකාර ගෝලාකාර අංශු සහිත ගෙන්දගම කුඩු ඉතිනු ලැබේ.
 - (i) ඉහස (c) හි වයුත්පන්න කළ ප්‍රකාශනය භාවිතයෙන් සාමානා මුහා මස පාවිය හැකි හෝලාකාර ගෙන්දගම අංශවල උපරිම අරය (r_m) ගණනය කරන්න. ගෙන්දගමවල සනස්වය 2000 kg m⁻³ වේ. සාමානා මුහාවල පෘෂ්ඨික ආසාතිය 6-5×10⁻³ N m⁻¹ වේ. ඔබගේ පිළිතුර mm වලින් එක් දශම ස්ථානයකට දෙන්න.
 - (ii) පිත් ලවණ තිබේ නම් සහ පුද්ගලයා සෙංගමාලය සඳහා ධනාත්මක ලෙස හඳුනාගෙන තිබේ නම් ගෙන්දගම් අංශු ශිලී යනු ඇත. හේ ගේ පරීක්ෂණ සදහා ඉහත (d) (i) හි ගණනය කළ අගය අනුව අරය 0-9 r ගෙන්දගම අංශු භාවිත වේ. සෙංගමාලය ඇති රෝගියෙකුගේ මූතාවල මෙම අංශු යන්තමන් ශිලී ශියහොත්, බලපෑමට ලක් වූ මුතාවල පෘෂ්ඨික ආකතිය ගණනය කරන්න. ඔබගේ පිළිතුර විදාහත්මක අංකනයෙන් එක් දශම ස්ථානයකට වටයන්න.
 - (e) අරය 0-4 mm වූ කේශික නළයක් බලපෑමට ලක් නොවූ මුහා සාම්පලයේ සිරස් අතට ගිල්වා ඇත්නම් කේශික උද්ගමනය ගණනය කරන්න. සාමානා මුහාවල සනත්වය 1020 kg m⁻³ වේ. මුහා සහ විදුරු අතර ස්පර්ශ කෝණය 30° ක් වේ. ඔබගේ පිළිතුර mm වලින් ආසන්න පූර්ණ සංඛාාවට දෙන්න. (√3 = 1.73 ලෙස ගන්න.)
 - (f) තත්පරයක් තුළ සර්වසම අරයන් සහිත ඉතා කුඩා මුහා බිඳිහි නිපදවන විදපුත් දියර ඉසිනයක් භාවිතයෙන් තවත් පරීක්ෂණ තුමයක් නිර්මාණය කළ හැකිය. සාමානා මුහා සාමපලයකින් බිඳිහි සැදීම සඳහා අවශාවන ක්ෂමතාවට පීත් ලවණ සහිත මුහා සාමපලයකින් බිඳිහි සැදීම සඳහා අවශාවන ක්ෂමතාව දරන අනුපාතය කොපමණ ද? සාමපල දෙකේම මුහාවල ඝනත්ව සමාන යැයි උපකල්පනය කරන්න. ඔබගේ පිළිතුර දශම ස්ථාන දෙකකට දෙන්න.
 - (a) දුවයක පෘෂ්ඨික ආතති සංගුණකය යනු දුව පෘෂ්ඨයක සළකන ලද කල්පිත සරල <u>රේඛාවක ඒකක දිගක්</u> මත <u>එක් දිශාවක</u>ට රේඛාවට <u>ලම්බකව</u> පෘෂ්ඨය ඔස්සේ ඇති බලය වේ.

(02 හෝ 00)

01 - හෞතික විදාහව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

මාවකයෙ හැඩය, දුව කඳෙ උස සහ නළයට පටතන දුව පෘෂධයෙ හැඩය බල්පානා. සෑම කොටසකම සියල්ල නිවැරදි නම් ලකුණු 02. සෑම වරදක් සඳහාම ලකුණු 01 ක් අඩු කරන්න.

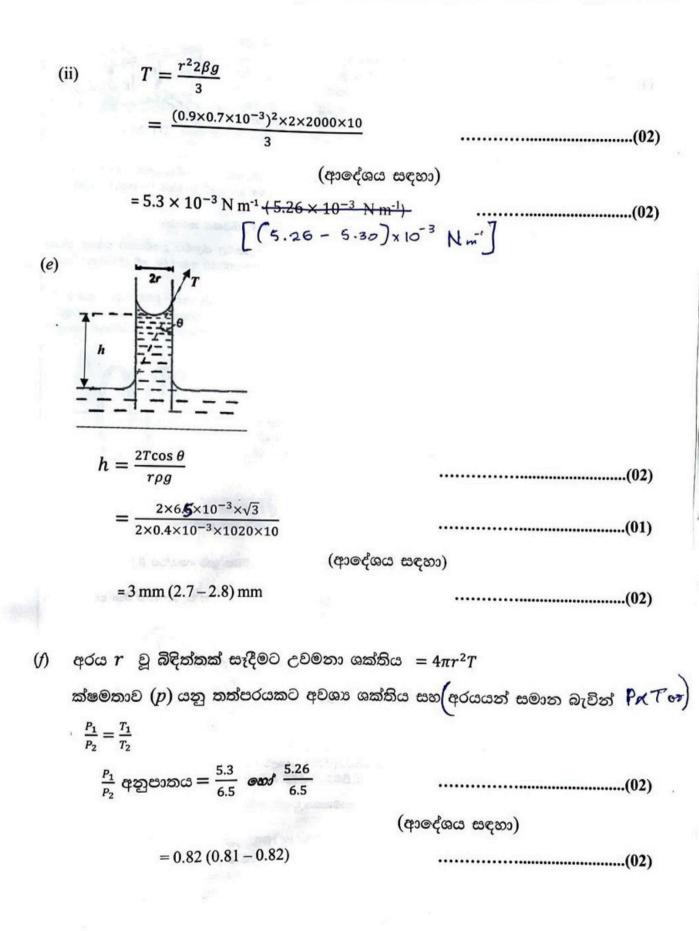
(c) ගෝලය දුවය තුල නොගිලී ඇති නිසා ගෝලය මත උඩුකුරු තෙරපුම කිුයා නොකරයි.

$$\frac{4}{3}\pi r^3\beta g = 2\pi rT$$

(වම්පස පදය සඳහා ලකුණු 01; දකුණුපස පදය සඳහා ලකුණු 01; සමාන කිරීම සඳහා ලකුණු 01)

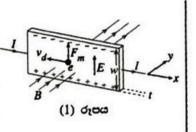
$$r_{\rm M} = \sqrt{\frac{3T}{2\beta g}} \tag{02}$$

.....(02)

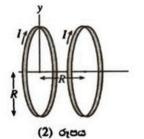

.....(03)

$$r_{m} = \sqrt{\frac{3 \times 6.5 \times 10^{-3}}{2 \times 2000 \times 10}}$$
$$= \sqrt{48.75} \times 10^{-1}$$
$$= \sqrt{49} \times 10^{-1}$$

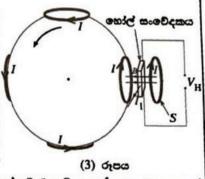
(d) (i)


01 - භෞතික විදාහව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

රහසා ලේබනයකි.



01 - භෞතික විදනාව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.


8. (a) පළල w සහ සනකම t වූ (1) රූපයේ පෙන්වා ඇති සෘජුකෝණාසාකාර තුනී පුවරුවක් ආකාරයෙන් වූ ලෝහ සන්නායකයක් සලකා බලන්න. නියත l ධාරාවක් +x දිශාවට ගලා යන අතර චූම්බක සුංච ඝනත්වය B වූ ඒකාකාර චුම්බක ක්ෂේතුයක් පුවරුවේ තලයට ලම්බකව +y දිශාවට කියා කරයි. ඉලෙක්ටෝනවල ප්ලාවිත පුවේගය v_d වේ. අනවරත අවස්ථාවට පැමිණි පසු පුවරුවේ ඉහළ පෘෂ්ඨයේ සෘණ ආරෝපණ එකතු වන අතර පහළ පෘෂ්ඨයේ ධන ආරෝපණ ඉතිරි වේ. එවිට පුවරුවේ ඉහළ සහ පහළ පෘෂ්ඨ අතර විභව අන්තරයක් ස්ථාපිත වන අතර එය භෝල් චෝල්ට්යතාව V_H ලෙස හැඳින්වේ.

- (i) හෝල් චෝල්ට්යතාව V_H සඳහා ප්‍රකාශනයක් චුම්බක සාව ඝනත්වය B, ධාරාව I, සන්නායකයේ ඒකක පරිමාවක චලනය වන ඉලෙක්වෝහ සංඛාාව n, ඉලෙක්ටෝන ආරෝපණය e සහ ප්‍රවරුවේ සණකම l ඇසුරෙන් වයුත්පන්න කරන්න.
- (ii) B=0.4T, I=32A, n=10²⁸m⁻³, e=1.6×10⁻¹⁹ C සහ t=2 mm නම් V_H නිර්ණය කරන්න.
- (iii) වෙතත් කිසිවක් වෙතස් නොකර, සම්පූර්ණ සන්නායකය ඉලෙක්ටෝනවල ප්ලාවිත ප්‍රවේගයට සමාන තියත ප්‍රවේගයකින් –x දිශාවට චලනය කළහොත් හෝල් චෝල්ටියතාවයේ විශාලත්වයට තුමක් සිදු වේ ද? ඔබගේ පිළිතුර සඳහා හේතු දක්වන්න.
- (iv) රූපය (1)හි පෙන්වා ඇති පරිදි පුවරුව නිශ්චලව ඇති විට ඉලෙක්ටෝනයක් මත ක්‍රියාකරන වුම්බක බලය සහ භෝල් විදයුත් ක්ෂේතු තිවුතාවය F_m සහ E මගින් පිළිවෙළින් නිරූපණය කරයි. ආරෝපණ වාහක සෘණ ආරෝපිත වෙනුවට ධන ආරෝපිත නම් v_d, F_m සහ E යන එක් එක්හි දිශාවන්ට කුමක් සිදු වේ ද? (වෙනස් වේ හෝ වෙනස් නොවේ)
- (b) හෝල් ආවරණ සංවේදක ක්‍රියාත්මක වන්නේ ඒවා වුම්බක ක්ෂේතුයක තැබූ විට සිදුවන වෝල්ට්යතා වෙනස්වීම අනාවරණය කර ගැනීමෙනි. ඒකාකාර වුම්බක ක්ෂේතුයක් උත්පාදනය කර ගැනීම සඳහා (2) රූපයෙහි පෙන්වා ඇති පරිදි එක් එක්හි එකම අරයක් හා එකම වට සංඛාාවක් සහිත වූ සහ එකම ධාරාවක් ගලා යන අරයට සමාන වූ දුරකින් තබා ඇති සර්වසම වෘත්තාකාර දඟර දෙකක් භාවිත කළ හැක. එමගින් දඟර දෙක අතර ඇතිවන වුම්බක සාව ඝනත්වය 1·4B₀වන අතර මෙහි B₀ යනු තනි දඟරයක කේන්දුයේ ඇති වුම්බක සාව ඝනත්වයයි.

- (i) බයෝ-සවා නියමයෙන් පටන්ගෙන වට සංඛාාව N වූ අරය R වූ I ධාරාවක් රැගෙන යන වෘත්තාකාර දගරයක කේන්දුයේ ඇති චුම්බක සාව ඝනත්වය (B₀) සඳහා ප්‍රකාශනයක් ලබා ගන්න. ප්‍රකාශනයේ අනෙක් සංකේතය නම් කරන්න.
- (ii) N = 1000, I = 2 A සහ R = 0.12 m නම් එක් දඟරයක කේන්දුයේ ඇති චුම්බක සාව ඝනත්වය B_0 ගණනය කරන්න. $(\mu_0 = 4\pi \times 10^{-7} {
 m m A}^{-1}$ සහ $\pi = 3$ ලෙස ගන්න)
- (iii) ඉහත (b) හි දක්වා ඇති ඡේදය අදාළ කර ගනිමින්, දගර දෙක 0-12 m ක ද්රින් කැබුවහොත් ඒවා අතර පවතින ඒකාකාර චුම්බක සාව ඝනත්වයේ අගය ගණනය කරන්න.
- (c) හුමණ වස්තූන්ගේ භුමණ වේග අනාවරණය කර ගැනීමට හෝල් ආචරණ සංවේදක භාවිත කරයි. පරිමිතිය වටා සමාන පරහරවලින් එකම ධාරාව රැගෙන යන සර්වසම දඟර හතරක් සවිකර ඇති භුමණය වන රෝදයක් (3) රූපයේ පෙන්වයි. රෝදයේ ඇති දඟරවලට සර්වසම වූ එම ධාරාවම රැගෙන යන අතිරේක දඟරයක් (S), හෝල් සංවේදකයක් සමග එය අසල ස්ථාවරව තබා ඇත. භුමණය වන රෝදයේ ඇති එක් දඟරයක් S ස්ථාවර දඟරය හා හෝල් සංවේදකය සමග හරි කෙළින් පැමිණි විට ඒකාකාර චුම්බක ක්ෂේතුයක් ස්ථාපිත වන අතර හෝල් සංවේදකයේ චෝල්ට්යතා ස්පන්දයක් ජනනය කිරීමට ඉඩ සලසයි. රෝදය භුමණය වන විට එක් එක් පෙළගැක්මේදී චෝල්ට්යතා ස්පන්දයක් නිපදවා භුමණ වේගය අනාවරණය කර ගැනීමට අවස්ථාව සලසයි.

- (i) හෝල් සංචේදකය මගින් ජනනය කරන ස්පන්ද සංඛානකය f₀ නම්, රෝදයේ හුමණ සංඛානකය f සඳහා ප්‍රකාශනයක් f₀ ඇපුරෙන් ලියා දක්වන්න.
- (ii) f₀ = සාත්පරයකට ස්පන්ද 240 නම් රෝදයේ හුමණ වේගය w, rpm වලින් ගණනය කරන්න.
- (iii) රෝදයේ භුමණ වේගය 7200 rpm ඉක්මවන විට අනතුරු ඇඟවීමේ නළාවක් කියාරම්භ විය යුතුය. අනතුරු ඇඟවීම කියාත්මක වන හෝල් සංවේදකයේ ස්පන්ද සංඛාානය නිර්ණය කරන්න.
- (iv) ප්‍රායෝගිකව විශාල හෝල් චෝල්ටියතා ලබා ගැනීමට ලෝහ වෙනුවට අර්ධ සන්නායක භාවිත කරයි. අර්ධ සන්නායකයක් විශාල හෝල් චෝල්ටියතාවක් නිපදවන්නේ ඇයි?

01 - භෞතික විදාහව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

රහතා ලේබනයකි.

m octoput

ශී ලංකා විභාග දෙපාතර්මෙන්තුව

(ii)

- $eE = ev_d B \quad (1)$ (a)(i).....(01) $I = newtv_d$(01)
 - (1) සමීකරණයේ v_d සඳහා ආදේශ කිරීමෙන්

$$E = \frac{1}{newt} B$$

නමුත්, $Ew = V_H$ (01)
 $\therefore V_H = \frac{1B}{net}$ (02)

.....(02)

 $V_H = \frac{10^{28} \times 1.6 \times 10^{-19} \times 2 \times 10^{-3}}{10^{28} \times 1.6 \times 10^{-19} \times 2 \times 10^{-3}}$

32×0.4

- (නිවැරදි ආදේශය සඳහා)
- $=4 \,\mu V (4 \times 10^{-6} \, V)$

<u> චුම්බක ක්ෂේතුයට සාපේක්ෂව ඉලෙක්ටෝන නිශ්චලව පවතින</u> නිසා *හෝ* චු<u>ම්බක</u> ක්ෂේතුයට සාපේක්ෂව ඉලෙක්ටෝන වල පුවේගය ශූනාා/ ස්ථාවර වන නිසා. (10)

(01)	වේ	v _d : වෙනස්	(iv)
(01)	නොවේ	Fm : වෙනස්	ellines
(01)	වේ	E : වෙනස්	

$$(b)$$
 (i)
 $I\Delta l = \frac{P}{R}$ බයෝ – සවා නියමය $\Delta B = \frac{\mu_0 I \Delta l \sin \theta}{4\pi R^2}$ (02)
 $(\mu \in B \in D D D D D)$

01 - භෞතික විදාහව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළක් කළ යුතුව ඇත.

ශී ලංකා විභාග දෙපාතර්මෙන්තුව

(ii)

වෘත්තාකාර දහරයක කේන්දුය සඳහා $heta = 90^{0}$ (01)

.....(01)

සහ දහරයේ පරිධිය = $2\pi R$ $\therefore B_0 = \frac{\mu_0 I 2\pi R}{4\pi R^2}$

 $B_0 = \frac{\mu_0 I}{2 t^R}$

වට N ගණනක් සහිත දහරයක් සඳහා

 $B_0 = \frac{\mu_0 N I}{2R}$ (02)

 $\mu_0 = ($ නිදහස් අවකාශයේ/ වාතයේ) පාරගමාතාව(01)

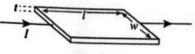
 $B_0 = \frac{4\pi \times 10^{-7} \times 1000 \times 2}{2 \times 0.12}$ (01)

(නිවැරදි ආදේශය සඳහා)

- = 0.01 T(iii) 0.014 T (02)
- (c) (i) $f = \frac{f_0}{4}$ (02) (ii) $\omega = \frac{240}{4} \times 60$ (01)

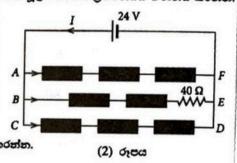
* [මෙම ලකුණ පුදානය කිරීමේදී අංක 4 (ඕනෑම අගයක් පිළිගන්න) නොසලකා හරින්න]

= 3600 rpm(01)


(iv) n/ ඒකක පරිමාවකට ආරෝපණ වාහක (ඉලෙක්ටෝන)/වාහක ඝනත්වය <u>කුඩා /</u> අඩු නිසා (ලෝහවලට සාපේක්ෂව)(01)

01 - භෞතික විදහව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

9. (A) කොටසාව හෝ (B) කොටසව හෝ පමණක් පිළිතුරු සපයන්න.


(A) කොටස

(a) ප්‍රත්රෝධකතාව ρ වන සන්නායක ද්‍රවායකින් සාදා ඇති දීo l, පළල w සහ ඝනකම l වන තුනී තාපන මූලාවයවයකට
 (1) රූපයේ පෙන්වා ඇති පරිදි සෘජ්‍රකෝණාසාකාර පටියක ආකාරයේ හැඩයක් ඇත.

- (1) 0200
- (i) තාපන මූලාවයවයේ R පුතිරෝධය සඳහා පුකාශනයක් ρ, l, w සහ t ඇසුරෙන් ලියා දක්වන්න.
- (ii) l=100 mm, w=20 mm, t=5 μm සහ ρ =8×10⁻⁵Ω m නම් සාපන මූලාවයවයක ප්‍රත්රෝධය ගණනය කරන්න.

 (b) ඉහත තුනී තාපන මූලාවයවයන් භාවිතයෙන් (2) රූපයේ පෙන්වා ඇති ස්ථානිය තාප විකිත්සාව සඳහා පැළඳිය හැකි තාපන පැඩයක් (heating pad) නිර්මාණය කර ඇත. තාපන මූලාවයවයන් 40 Ω පුතිරෝධයක් සමග රූපයේ දැක්වෙන පරිදි සකස් කර පැඩය අභාන්තර ප්‍රතිරෝධය නොගිණිය හැකි 24 V d.c. සැපයුමකට සම්බන්ධ කොට ඇත. තාපන මූලාවයවයන් සාජුකෝණාප මගින් නිරූපණය කොට ඇත. අවශා B විකිත්සක තාපය ලබා දීම සඳහා තාපන පැඩය අවම වශයෙන් 7.0 W නිපදවිය යුතු ය.
 (i) පරිපථයේ AF ශාඛාවේ සහ BE ශාඛාවේ ප්‍රතිරෝධය ගණනය කරන්න.

- (ii) BE ශාඛාව හරහා ධාරාව ගණනය කරන්න.
- (iii) BE ශාබාවේ සහ සම්පූර්ණ පරිපථයේ ක්ෂමතා උත්සර්ජනය ගණනය කරන්න. තාපන පැඩය අවශා ක්ෂමතාව නිපදවන්නේ ද?
- (iv) සියලු තාපන මූලාවයවයන්වල ඝනකම හරි අඩකින් අඩු කළහොත් පරිපථයේ සම්පූර්ණ ක්ෂමතා උත්සර්ජනය ගණනය කරන්න.
- (v) දිω l, පළල w ට සමාන වුවහොත් (1) රූපයේ පෙන්වා ඇති තාපන මූලාවයවයේ ප්‍රතිරෝධය, මූලාවයවයේ පෘෂ්ඨික වර්ගඵලයෙන් (lw) ස්වායන්ත වන බව පෙන්වන්න.
- (vi) සනකම 5 μm වන ඉහත කාපන මූලාවයවයේ ඉහළ පෘෂ්ඨයේ ඒකක සමචතුරසයකට පුතිරෝධය ගණනය කරන්න.
- (c) එක මත එක තැන්පත් කර තුනී ස්තර දෙකකින් සාදා ඇති ප්‍රතිරෝධක මූලාවයවයන්ගෙන් තාපන පැඩයක් සමන්විත වී ඇතැයි උපකල්පනය කරන්න.

1 ස්තරය: උෂ්ණත්වය සමග පුතිරෝධකතාව වෙනස් නොවන දුවායකින් සාදා ඇත.

2 ස්තරය: ආරම්භයේදී 1 ස්තරයේ පුතිරෝධකතාවට සමාන වන නමුත් උෂ්ණත්වය වැඩි වන විට පුතිරෝධකතාව වැඩ වන දුවායකින් සාදා ඇත.

තාපන පැඩය නියත චෝල්ටීයනා පුභවයකින් තියාත්මක වේ. කාලය සමග විකරණය කරන ලද තාපන පැඩයේ ක්ෂමතා උත්සර්ජනයට කුමක් සිදු වේ දැයි හේතු දක්වමින් පැහැදිලි කරන්න.

- (d) පරිපථවලට ජවය සැපයීමට භාවිත කරන d.c. සැපයුමක් පුදුසු අවකර පරිණාමකයක් භාවිතයෙන් ගොඩනගා ගත හැකිය. මෙහිදී, 240 V (r.m.s.) a.c. පුදාන චෝල්ටියතාවක් 12 V (r.m.s.) සහ 48 V (r.m.s.) අතර වෙනස් කළ හැකි ප්‍රතිදාන a.c. චෝල්ටියතාවකට පරිවර්තනය කිරීම සඳහා පරිණාමකය භාවිත වේ. පරිණාමකයේ ප්‍රාථමික දඟරයේ පොටවල් 800ක් ඇත. ප්‍රතිදාන අදියරේදී, පරිණාමකයේ ප්‍රතිදානය d.c. චෝල්ටියතාවක් බවට පරිවර්තනය කරනු ලබයි.
 - (i) පරිණාමකයේ ද්විතියිකයේ චෝල්ටියතාව (V_g) ව පාරමිකයේ චෝල්ටියතාව (V_p) දරන අනුපාතය පාරමික දඟරයේ වට සංඛනාව (N_p) සහ ද්විතියික දඟරයේ වට සංඛනාව (N_g) ඇතුරෙන් ලියා දක්වන්න.
 - (ii) ද්විතියික දඟරයේ r.m.s. චෝල්ට්යතාව 12 V සහ 48 V අතර විවලනය කළ හැකි නම්, ද්විතියික දඟරයට අවශා පොටවල් ගණනේ පරාසය ගණනය කරන්න.
 - (iii) ප්‍රතිදාන d.c. වෝල්ටියතාව, පරිණාමක ද්විතියිකයේ r.m.s. ප්‍රතිදාන වෝල්ටියතාව මෙන් 80% ක් වේ. ප්‍රර්ණ සාජ්‍රකරණය කරන ලද අපේක්ෂිත d.c. ප්‍රතිදාන වෝල්ටියතාව 24 V නම්, පරිණාමකයේ ප්‍රතිදාන r.m.s. චෝල්ටියතාව ගණනය කරන්න.
 - (iv) පරිණාමකය, 24 V d.c. දී 120 W පරිභෝජනය කරන හාරයකට ජවය සපයයි. ජූල් තාපනය නිසා ද්විතීයිකයේ ක්ෂමතා හානිය හාරය පරිභෝජනය කරන ක්ෂමතාවය මෙන් 10% ක් නම් පරිණාමකයේ ප්‍රතිදාන r.m.s. ධාරාව ගණනය කරන්න.

01 - භෞතික විදාහව (ලකුණු දීමේ පරිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

මු ලංකා විභාග දෙපාතර්මෙන්තුව

(a) (i) $R = \frac{\rho l}{wt}$	(01)
(ii) පුතිරෝධය = $\frac{8 \times 10^{-5} \times 100 \times 10^{-3}}{20 \times 10^{-3} \times 5 \times 10^{-6}}$	(01)
	(නිවැරදි ආදේශය සඳහා)
= 80 Ω	(01)
(b) (i) $R_{\rm AF} = 80 + 80 + 80$	(01)
	(එකතු කිරීම සඳහා)
= 240 Ω	(01)
$R_{\rm BE} = 80 + 80 + 40$	(01) (එකතු කිරීම සඳහා)
= 200 Ω	(01)
(ii) BE ශාඛාව සඳහා 24 = I _{BE} × 200	(01)
	(ආදේශය සඳහා)
$I_{\rm BE} = 120 \text{ mA} (0.12 \text{ A})$	(01)
(iii) $P_{\rm BE} = I_{\rm BE}^2 \times R_{\rm BE} \text{Old}^2 \frac{V^2}{R_{\rm BE}}$	
$= (0.12)^2 \times 200$ GeV $\frac{24^2}{200}$	(01)
	(ආලද්ශය සඳහා)
= 2.88 W	(01)
$P_{\rm AF} = \frac{24^2}{240} = 2.4$	(01) (ආදේශය සඳහා)
$P = P_{\rm AF} + P_{\rm BE} + P_{\rm CD} = 2.4 + 2.88 + 2.4$	(1-1-1-1-1)

ඔව් (7.68 > 7 නිසා)(01) (මෙම ලකුණ ලබා ගැනීමට සිසුන් පිළිතුර ලෙස 7.68 W ලබා ගත යුතුය)

= 7.68 W

.....(01)

ශී ලංකා විභාග දෙපාතර්මෙන්තුව

(iv) ඝනකම අඩකින් අඩු කිරීමෙන් තාපන මූලාවයවයන්හි පුතිරෝධය 2 ගුණයකින් වැඩි වේ. එබැවින් AF සහ CD ශාඛාවල ක්ෂමතාවය මුල් අගයෙන් අඩක් බවට පත්වේ.

 $R_{\rm BE, \, SDD} = 80 \times 2 + 80 \times 2 + 40$(01) (එකතු කිරීම සඳහා) $= 360 \Omega$ $P_{\text{BE, DD}} = 24^2/360 \text{ GeV} \left(\frac{24}{360}\right)^2 \times 360$(01) = 1.6 W $P_{zDD} = \frac{2.4}{2} + \frac{2.4}{2} + 1.6$(01) (එකතු කිරීම සඳහා)

(v)
$$l = w$$
 $\mathfrak{O} \mathfrak{G}, R = \frac{\rho l}{lt} = \frac{\rho}{t}$

මෙය පෘෂ්ඨික වර්ගඵලය (lw) ස්වායත්ත වේ.

(vi)
$$R = \frac{8 \times 10^{-5}}{5 \times 10^{-6}}$$

(c)

$$= 16 \Omega$$
 ($k_* \otimes N_2 \otimes$

01 - භෞතික විදාහව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

$$V_{\rm d.c.} = V_{\rm s,r.m.s.} \times 0.8$$

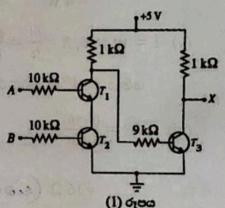
 $V_{\rm s,r.m.s.} = \frac{V {\rm d.c.}}{0.8} = \frac{24}{0.8}$

- 17

(iv)

$$I_{s \text{ r.m.s}} = \frac{120 + 120 \times 0.1}{30}$$

 $I_{srms} = P / V_{srm}$


= 30 V

= 4.4 A

.....(01)

(B) 80000

(a) ස්විච්චි ලෙස සියා කරන වුාන්සිස්වර වලින් සාදා ඇති (1) රූපයේ දැක්වෙන AND ද්වාර පරිපථය සලකා බලන්න. පරිපථය $T_1, T_2 = x_1 T_3$ npn වාන්සිස්ටර තුනකින් සමන්වික වේ. A සහ B පුදාන, $T_1 = x_2 T_2$ වාන්සිස්ටරවල කියාකාරීත්වය පාලනය කරන අතර T_3 වාත්සිස්වරය අවසාන X පුතිදානය පාලනය කරයි. පරිපථය V_{CC} =+5 V රව සැපයුමකින් කියාත්මක වේ. සියලුම වාන්සිස්ටර සඳහා $V_{\rm BE}$ =0.7V, β =100, සහ සන්තාප්ත අවස්ථාවේ $V_{CE} = 0.2 V$ еса свасвода абойо. T_1 во T_2 веко евах водова ධාරා 4 mA වන අතර T3 සඳහා එය 4.8 mA වේ.

(i) A සහ B පුදාන දෙකම 5 V වන අවස්ථාව සලකා බලන්න,

(I) T2 හි පාදම ධාරාව ගණනය කරන්න. එනයින් T2 සන්කෘප්ත අවස්ථාවේ ඇති බව පෙන්වන්න.

(II) T, හි පාදම ධාරාව ගණනය කරන්න. එනයින් T, සන්තපේත අවස්ථාවේ ඇති බව පෙන්වන්න.

- (ii) $A=5V \exp B=0V \exp A=0V \exp B=5V \exp$ අවස්ථාව සලකා බලන්න. සංගාහකයේ සිට විමෝචකය දක්වා ධාරා සන්නයනය සලකා බලමින් T1 සහ T2 එක එකෙහි කියාකාරී තත්ත්වය (සංවෘත හෝ විවෘත ; ON හෝ OFF) සඳහන් කරන්න. ගණනය කිරීම අවශා නොවේ.
- (iii) T1 හෝ T2 හෝ කපා හැරි (OFF) අවස්ථාවේ කියාත්මක වන විට T3 හි පාදම ධාරාව ගණනය කරන්න. එනයින් T3 සන්තපේත අවස්ථාවේ ඇති බව පෙන්වන්න,
- (iv) පහත සඳහන් පුදාන අවස්ථා සඳහා පුතිදාන වොල්ටියකා V_X හි අගයන් මොනවාද? එක් එක් අවස්ථාව සඳහා T 3 හි මෙහෙයුම් ආකාරය (සංවෘත හෝ විවෘත; ON හෝ OFF) සඳහන් කරන්න.

1 අවස්ථාව : A=5V සහ B=5V

2 අවස්ථාව : A=5V සහ B=0V

3 අවස්ථාව : A=0V සහ B=0V

- (b) රූපය (2) හි දැක්වෙන A1 සහ B1 ද්විමය සංඛාා දෙකක් සංසන්දනය කරන තාර්කික සංසන්දකයක කට්ටි රූප සටහන (block diagram) සලකා බලන්න. F_1 පුතිදානය 1බවට පත්වන්නේ A1 සහ B1 සමාන නම් පමණි.
 - (i) සංසන්දකයේ සතාතා වගුව ලියා දක්වන්න.
 - (ii) ඉහත සතාතා වගුව භාවිතයෙන් සංසන්දකයේ කාර්කික පුකාශනය ලියා දක්වන්න.
 - (iii) A₁ සහ B₁ පුදාන සහිත XOR ද්වාරයක සතාතා වගුව සහ තාර්කික පුකාශනය ලියා දක්වන්න. එය භාවිත කරමින් සංසන්දකය සඳහා තාර්කික පුකාශනයක් ලියා දක්වන්න.
 - (iv) XOR ද්වාරයක් සහ NOT ද්වාරයක් භාවිත කර සංසන්දකයේ භාර්කික පරිපථය ඇඳ දක්වන්න.
 - (v) XOR ද්වාර පමණක් භාවිත කර සංසන්දකයේ තාර්කික පරිපථය ඇඳ දක්වන්න.
 - ඉතිය: XOR ද්වාරයක එක් පුදානයක් අවශා පරිදි කාර්කික 1 හෝ 0 ට ස්ථිරව සම්බන්ධ කරන්න.
 - (vi) ඉහත (2) රූපයේ දැක්වෙන කට්ටි රූප සටහන සහ එක් අමතර පුදාන 3ක් සහිත තාර්කික ද්වාරයක් භාවිත කරමින්,
- (c) P සහ Q වර්ග දෙකක තාර්කික ද්වාර සලකා බලන්න. ඒ සඳහා පුදාන සහ පුතිදානවල තාර්කික වෝල්ටියතා මට්ටම වගුවේ දක්වා ඇත.

තාර්කික	94:	ානය	පුති	දානය
ද්වාරය	තාර්කික 1	තාර්කික 0	තාර්කික 1	තාර්කික 0
Р	2 V 80 5 V	0 V 80 08 V	2.7 V 80 5 V	0 V 80 0 4 V
Q	3.5 V 80 5 V	0 V 80 1.5 V	4.95 V 80 5 V	0 V 80 0-05 V

තාර්කික පරිපථයක් තැනීම සඳහා P සහ Q වර්ගවලින් තාර්කික ද්වාර භාවිත කරනු ලබයි.

- (i) එක් පරිපථයක, P හි පුතිදානය Q හි පුදානයට සම්බන්ධ වේ. පරිපථය නියමිත පරිදි කියාත්මක වනු ඇතැයි ඔබ අපේක්ෂා කරන්නේ ද? කෙටියෙන් පැහැදිලි කරන්න.
- (ii) වෙනත් පරිපථයක, Q හි පුතිදානය P හි පුදානයට සම්බන්ධ වේ. පරිපථය නියමිත පරිදි කියාත්මක වනු ඇතැයි ඔබ අපේක්ෂා කරන්නේ ද? කෙටියෙන් පැහැදිලි කරන්න.

I.

$$I_{\rm B2} = \frac{(5-0.7)}{10\times10^3}$$

 $= 430 \ \mu A \ (4.3 \times 10^{-4} \ A)$

සන්තෘප්ත වීම සඳහා අවශා පාදම ධාරාව $I_{
m C}/eta=4/100=40~\mu{
m A}$

 $I_{B2} > I_C/\beta$ ගහා 430 $\mu A > 40 \mu A$ නිසා(01)

පාදම ධාරාව T_2 සන්තෘප්ත අවස්ථාවේ කියාකරවීමට පුමාණවත් වේ.

10500 8

01 - භෞතික විදනාව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

$$\begin{array}{c} A_1 - \\ B_1 - \\ \end{array} \begin{array}{c} A_1 = B_1 \\ - \\ \end{array} \begin{array}{c} F_1 \\ - \\ \end{array}$$

රහසා ලේබනයකි.

(2) රුපය

.....(01)

......(01)

.....(01) II. $I_{\rm B1} = \frac{(5-0.7-0.2)}{10\times10^3}$(01)

 $=410 \,\mu\text{A} (4.1 \times 10^{-4} \,\text{A})$

සන්තෘප්ත වීම සඳහා අවශා පාදම ධාරාව $I_{
m C}/eta=4/100=40~\mu{
m A}$

 $I_{\rm B1} > I_{\rm C}/\beta$ *මහ*් 410 μ A > 40 μ A නිසා පාදම ධාරාව T_1 සන්තෘප්ත අවස්ථාවේ කියාකරවීමට පුමාණවත් වේ.

(i)
$$A = 5$$
 V සහ $B = 0$ V සඳහා ; T_2 විවෘතයි, T_1 විවෘතයි(01)

A = 0 V සහ B = 5 V සඳහා; T_1 is විවෘතයි, T_2 is විවෘතයි.....(01)

 $I_{\rm B3} = \frac{(5-0.7)}{(9+1)\times10^3}$(01) (ii) $= 430 \ \mu A \ (4.3 \times 10^{-4} \ A)$(01)

> සන්තෘප්ත වීම සඳහා අවශා පාදම ධාරාව $I_{
> m C}/eta=4.8/100=48~\mu{
> m A}$ $I_{\rm B3} > I_{\rm C}/\beta$ ගහර 430 $\mu {\rm A} > 48 \ \mu {\rm A}$ නිසා(01) පාදම ධාරාව T_3 සන්තෘප්ත අවස්ථාවේ කියාකරවීමට පුමාණවත් වේ.

(iv)

1 අවස්ථාව:
$$A = 5 V \mod B = 5 V$$

 2 අවස්ථාව: $A = 5 V \mod B = 0 V$

 3 අවස්ථාව: $A = 0 V \mod B = 0 V$

 1 අවස්ථාව: T_3 විවෘතයි $\mod V_X = 5 V$

 2 අවස්ථාව: $T_3 \boxdot 0$ වෘතයි $\mod V_X = 0.2 V$

 3 අවස්ථාව: $T_3 \boxdot 0$ වෘතයි $\mod V_X = 0.2 V$

 3 අවස්ථාව: $T_3 \bowtie 0$ වෘතයි $\mod V_X = 0.2 V$

 3 අවස්ථාව: $T_3 \boxdot 0$ වෘතයි $\mod V_X = 0.2 V$

01 - භෞතික විදනාව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

රහසා ලේබනයකි.

ගී ලංකා විභාග දෙපාතර්මෙන්තුව

Comos ectamont

(b)	(i)									
-----	-----	--	--	--	--	--	--	--	--	--

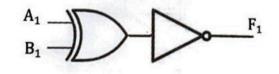
A ₁	B ₁	F ₁
0	0	1
0	1	0
1	0	0
1	1	1

.....(02) (02 මහා 00)

(ii) $F_1 = (\bar{A}_1 \bar{B}_1 + A_1 B_1)$

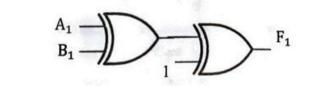
.....(02) (නිවැරදි පදයක් සඳහා ලකුණු 01 බැගින්)

(iii)

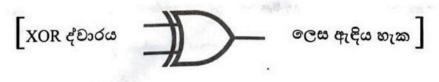

A ₁	B_1	FXOR
0	0	0
0	1	1
1	0	1
1	1	0

10000

(02 God 00)


(iv)

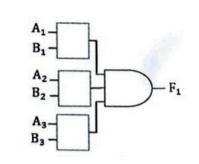
(v)


......(02)

(02 හෝ 00)

......(02)

(02 මහා 00)



ශී ලංකා විභාග දෙපාතර්මෙන්තුව

(vi)

(c)

(i)

.....(01)

.....(01)

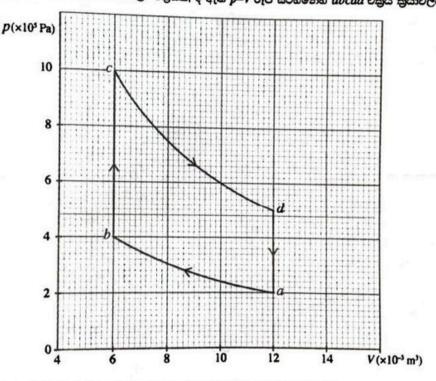
P හි තාර්කික 1 පුතිදාන වෝල්ටීයතා මට්ටම් Q හි තාර්කික 1 පුදාන චෝල්ටීයතා මට්ටමින් පිටත පිහිටයි(01)

(ii) ඔව්

නැත

.....(01)

Q හි තාර්කික පුතිදාන වෝල්ටීයතා මට්ටම් P හි තාර්කික පුදාන වෝල්ටීයතා මට්ටම් ඇතුළත/තුළ පිහිටයි(01)


01 - භෞතික විදහාව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

රහතා ලේබනයකි.

10. (A) කොවසාව හෝ (B) කොවසාව හෝ පමනක් පිළිතුරු සපයක්ත.

(A) 80000

- (a) සංවෘත පද්ධතියක් සඳහා කාප ගති විදාහවේ පළමු නියමය ΔQ=ΔU+ΔW ලෙස ලිව්ය හැක. එක් එක් පදය පැහැදිලිව
- (b) සමෝෂ්ණ කියාවලියක්, නියන පීඩන කියාවලියක් සහ ස්ට්රතාපී කියාවලියක් යන්නෙන් ඔබ අදහස් කරන්නේ කුමක් ද?
- (c) එකම ලක්ෂායෙන් පටන් ගෙන එය A ලෙස සලකුණු කර ඉහත ක්රියාවලි තුනම එකම p–V රූප සටහනක ඇඳ පෙන්වන්න. සමෝෂ්ණ, නියන පීඩන සහ ස්ටීරතාපී කියාවලින් පිළිවෙළින් AX, AY සහ AZ ලෙස සලකුණු කරන්න.
 - (i) බොයිල් නියමය පිළිපදින්නේ කුමන කියාවලියේ ද?
 - (ii) චාල්ස් නියමය පිළිපදින්නේ කුමන කියාවලියේ ද?
 - (iii) නියත පීඩන කියාවලියක පීඩනය P_1 හි දී පරිමාව V_1 සිට V_2 දක්වා වැඩි කළහොත් ΔW සඳහා පුකාශනයක් P_1 , V1 සහ V2 ඇතුරෙන් ලියා දක්වන්න.
- (d) රොබර්ට ස්ටර්ලිං විසින් 1816දී සොයා ගන්නා ලද ස්ටර්ලිං (Stirling) එන්ජීම, තාපය යාන්තික කෝතිය බවට පරිවර්තනය කරයි. එය සංවෘත පරිපූර්ණ වායු පද්ධතියක් වෙනස් උෂ්ණත්වයන්ට නිරාවරණය කිරීමෙන් ලැබෙන චකීය නියාවලියක් මගින් කියාත්මක වේ. එක්කරා ස්ටර්ලිං චකුයක්, දී ඇති p–V රූප සටහනෙහි abcda චකිය කියාවලියෙන් පෙන්වා ඇත.

- (i) හේතු දක්වමින් ab, bc, cd සහ da යන ක්‍රියාවලි වර්ග හතර හඳුන්වන්න.
- (ii) a ලක්ෂහයේ උෂ්ණත්වය 273°C නම් b, c සහ d ලක්ෂායන්හි උෂ්ණත්ව සොයන්න.
- (iii) bc වැනි සිරස් රේඛාවකින් නිරූපණය වන කියාවලියක් සඳහා අභාත්තර ශක්තියේ වෙනස $\Delta U_{bc} = \frac{3}{2} (P_{c} P_{b}) V_{b}$ සම්කරණය මගින් ලබා දේ. මෙහි P, සහ P, යනු පිළිවෙළින් b සහ c යන ලක්ෂාවල පීඩනය වේ. b හිදී පරිමාව V ු වේ. bc සහ da කියාවලින්හිදී පද්ධතියට සැපයෙන කාප ශක්තිය ගණනය කරන්න.
- (iv) ගණනය කිරීම සඳහා පමණක් ab සහ cd සරල රේඛා යැයි උපකල්පනය කර, ab සහ cd ක්රියාවලීන් හිදී සිදු කරන ලද කාර්යය සොයන්න.
- (v) ඉහත (d) (iv) හි ඇති උපකල්පනයම භාවිත කරමින් එක් චකුයක් තුළ සිදු කරන ලද සඵල කාර්යය ගණනය කරන්න.
- (vi) ඉහත (d) (iv) හි ඇති උපකල්පනයම භාවිත කරමින් abcda වසිය කියාවලියේ කාර්යක්ෂමතාව ගණනය කරන්න.

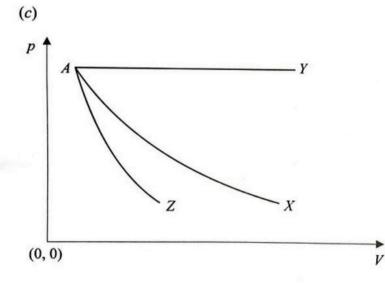
01 - භෞතික විදහාව (ලකුණු දීමෙ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

ශී C·කා විභාග දෙපාතර්මෙන්තුව

(a) $\Delta Q = \underline{e}$ ද්ධතියට සපයන ලද තාපය (තාප වෙනස සඳහා ලකුණු නැත)(01)

 ΔU = අභාහන්තර ශක්තියේ වැඩිවීම (හෝ වෙනස)(01)

ΔW = පද්ධතිය මගින් කරන ලද කාර්යය (කාර්යය වෙනස සඳහා ලකුණු නැත)(01)


(b) සමෝෂ්ණ කියාවලිය:

කියාවලිය පුරාම උෂ්ණත්වය එකම අගයක/සමානව පවතී. (*හෝ* $\Delta T=0$)(01)

නියත පීඩන කියාවලිය: කියාවලිය පුරාම පීඩනය එකම අගයක/සමානව පවතී. (*හෝ Δp* = 0)

කියාවලිය පුරාම පද්ධතියේ තාප පුමාණය නියතව පවතී *හෝ* කියාවලියේදී තාප අවශෝෂණයක් *හෝ* හානියක් සිදු නොවේ (*හෝ* $\Delta Q=0$)

.....(01)

[නිවැරදිව නම් කරන ලද සෑම රේඛාවකටම ලකුණු 01බැගින්; (0,0) නොබලන්න.]

......(03)

- (i) බොයිල් නියමය: *AX හෝ* සමෝෂ්ණ කියාවලිය(01)
- චාල්ස් නියමය: *AY හෝ* නියත පීඩන කිුයාවලිය(01)

(ii)
$$\Delta W = p(V_2 - V_1)$$

01 - භෞතික විදහාව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

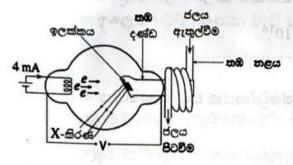
(i) ab සඳහා $12 \times 2 = 6 \times 4$ සහ cd සඳහා $12 \times 5 = 6 \times 10$ බැවිත් $p_1V_1 = p_2V_2$ (d).....(01) එමනිසා, ab සහ cd සමෝෂ්ණ කියාවලීන් ($\Delta T=0$) වේ.(01) $V_b = V_c$ සහ $V_d = V_a$ හෝ සිරස් රේඛා වේ.(01) එමනිසා, bc සහ da නියත පරිමා කියාවලීන් ($\Delta V=0$) වේ.(01) (ii) ab සමෝෂ්ණ ($\Delta T = 0$) කියාවලියක් බැවිත් b හි දී උෂ්ණත්වය 273 °C කි.(01) bc නියත පරිමා ($\Delta V=0$) කියාවලියක් බැවින් $rac{p_1}{T_1}=rac{p_2}{T_2}$ ට ආදේශයෙන් c හි දී උෂ්ණත්වය 1092 ℃ කි.(01) cd සමෝෂ්ණ ($\Delta T=0$) කියාවලියක් බැවිත් d හි දී උෂ්ණත්වය 1092 °C කි.(01) (iii) $\Delta W_{bc} = 0 \Delta W_{bc} = 0$ බැවින්,(01) $\Delta Q_{bc} = \Delta U_{bc}$ $\Delta Q_{bc} = \frac{3}{2}(10 - 4) \times 10^5 \times 6 \times 10^{-3}$(01) (නිවැරදි ආදේශය සඳහා) = +5400 J(01) ("+" (O man afonsibar mon) $\Delta W_{da}=0$ බැවිත්, $\Delta Q_{da}=\Delta U_{da}$ $\Delta Q_{da} = \frac{3}{2}(2-5) \times 10^5 \times 12 \times 10^{-3}$

= – 5400 J (මෙම ලකුණ ලබා ගැනීමට – සළකුණ තිබීම අනිවාර්ය වේ.)

01 - භෞතික විදාහව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 | අවසන් සංශෝධන ඇතුළක් කළ යුතුව ඇත.

රහසා ලේබනයකි.

(iv) ab තුල්දී කරන ලද කාර්යය = ab යටතේ ඇති වර්ගඵලය. දකුණේ සිට වමට


= +2700 J

(4.64.88.89.99)(01)

01 - භෞතික විදාහව (ලකුණු දීමේ පරිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

(B) කොවස

(a) රූපයේ දැක්වෙන්නේ X- කිරණ නළයක කුමානුරූප රූප සවහනකි. එය V=30 kV දී ක්‍රියාත්මක වන අතර සූත්‍රිකා ධාරාව 4 mA වේ.

- (i) තත්පරයකට ඉලක්කයට වදින ඉලෙක්ටෝන සංඛාාව (n) නිර්ණය කරන්න. ඉලෙක්ටෝන ආරෝපණය = 1.6×10⁻¹⁹ C
- (ii) තත්පරයකට ඉලක්කයට වදින ඉලෙක්ටෝනවල සම්පූර්ණ වාලක ශක්තිය K ගණනය කරන්න. සූතිකාවෙන් විමෝචනය වන ඉලෙක්ටෝනවල වාලක ශක්තිය නොසැලකිය හැකි යැයි උපකල්පනය කරන්න.
- (iii) ඉහත (a)(ii) හි ගණනය කරන ලද ශක්තියෙන් 95% ක් ඉලක්ක ලෝහය තුළ තාපය බවට පරිවර්තනය වේ. ගලා යන ජලයට සම්බන්ධ කර ඇති සර්පිලාකාර තඹ බවයකින් ආවරණය වූ තඹ දණ්ඩක් භාවිතයෙන් මෙම ජනනය වන තාපය ඉවතට ගනු ලැබේ. ජලයේ උෂ්ණත්ව වැඩිවීම 57℃ නම ජල පුවාහයේ ස්කන්ධ ශීසුතාව m (kgmin⁻¹ වලින්) ගණනය කරන්න. ජලයේ විශිෂ්ට තාප ධාරිතාව 4000 J kg⁻¹℃-⁻¹ ලෙස ගන්න.
- (b) (i) විමෝචනය වන X-කිරණවල අවම තරංග ආයාමය (λ_{\min})ගණනය කරන්න. ජලාන්ක් නියනය $h = 6.6 \times 10^{-34} \, {
 m J s}$ සහ ආලෝකයේ වේගය $c = 3.0 \times 10^8 \, {
 m m s}^{-1}$ වේ.
 - (ii) ඉහත ගණනය කළ λ_{min} අගය ඉලක්ක දුවාය මත රඳා පවතී ද? ඔබගේ පිළිතුර සඳහා හේතු දක්වන්න.
 - (iii) සූතිකා ධාරාව වැඩිවුවහොත් ඉහත ගණනය කළ \u03c8 min අගය වෙනස් වේ ද? ඔබගේ පිළිතුර සඳහා හේතු දක්වන්න.
 - (iv) ඉලක්ක ලෝහ සාමානායයන් ටංස්ටන් හෝ මොලිබඩිනම් වලින් සාදා ඇත. මෙයට හේතු මොනවා ද?
- (c) (i) නිවුතාව 5×10³ W m⁻² වූ X-කිරණ කදම්බයක් සඵල වර්ගඵලය 0·01 m² වන මිනිස් ඉන්දියයක් මතට පතනය වේ. එක් තත්පරයකදී ඉන්දියයට ලබා දෙන සම්පූර්ණ ශක්තිය ගණනය කරන්න.
 - (ii) ඉන්දියයේ ස්කන්ධය 0-5 kg නම් අවශෝකෙ මාතාව Gray වලින් ගණනය කරන්න. (1Gy=1Jkg⁻¹)
 - (iii) X-කිරණ ඵලදායි ලෙස අවහිර කිරීමට හෝ නිවාරණය (shield) කිරීමට භාවිත කළ හැකි වඩාත්ම සුදුසු දුවායක් සඳහන් කරන්න.
 - (iv) (I) විකිරණ පරිසරයක වැඩ කරන පුද්ගලයින් සඳහා විකිරණවල සඵල අවශෝෂක මානුාව (Sv වලින්) මැනීම වැදගත් වන්නේ ඇයි?
 - (II) අවශෝෂක මාන්‍රාව එක සමාන වන විට පවා සඵල අවශෝෂක මාන්‍රාව විවිධ විකිරණ වර්ග අතර වෙනස් වීමට හේතුව කුමක් විය හැකි ද?
- (d) අධි ශක්ති ඉලෙක්ටෝනයකින් පරමාණුවකට පහර දෙන විට අභාත්තර ඉලෙක්ටෝනයක් මුදා හරිමින් අභාත්තර ශක්ති මට්ටමේ පුරප්පාඩුවක් ඇති කළ හැක. ශක්ති මට්ටම අතර වෙනසට සමාන ශක්තියක් සහිත පෝටෝනයක් වීමෝචනය කරමින් එම පුරප්පාඩුවට පිටතින් වූ ඉලෙක්ටෝනයක් සංකුමණය විය හැක. මෙම කියාවලියට නිශ්චිත සංඛානයක් සහිත X-කිරණ ජනනය කළ හැක. ඉහළ සහ පහළ මට්ටමවල ශක්තීන් පිළිවෙළින් E₁ සහ E₂ නම්, වීමෝචනය වන X-කිරණ පෝටෝනයේ සංඛනාතය f, hf=E₁-E₂ මගින් ලබා දේ. මෙහි h යනු ප්ලාන්ක් නියනයයි.
 - (i) ඇලුමිනියම් සඳහා E₁=-74 eV සහ E₂=-1624 eV නම්, ඉහළ ශක්සි මට්ටමේ සිට පහළ ශක්සි මට්ටම දක්වා ඉලෙක්ටෝන සංකුමණයක් සිදුවන විට විමෝචනය වන X-කිරණ පෝටෝනයේ ශක්තිය (eV වලින්) ගණනය කරන්න.
 - (ii) නිපදවන X-කිරණ පෝටෝනයේ අනුරුප තරංග ආයාමය නිර්ණය කරන්න. hc = 1240 eV nm ලෙස ගන්න.
- (e) ශක්තිය, තරංග ආයාමය සහ විනිවිද යන බලය අනුව, දෘඪ X-කිරණ සහ මෘදු X-කිරණ එක්නෙකින් වෙනස් වන්නේ කෙසේ ද?

SCIERCE -----

රහසා ලේබනයකි ශී ලංකා විභාග දෙපාතර්මෙන්තුව (01) (a) (i) I = ne $n = \frac{4 \times 10^{-3}}{1.6 \times 10^{-19}}$ $= 2.5 \times 10^{16}$(01) (ii) තනි ඉලෙක්ටෝනයක වාලක ශක්තිය = eV සියලුම ඉලෙක්ටෝනවල සම්පූර්ණ වාලක ශක්තිය = neV $= 2.5 \times 10^{16} \times 1.6 \times 10^{-19} \times 30 \times 10^{3}$ $= 120 \text{ J s}^{-1} (\text{W})$ (iii) $120 \times \frac{95}{100} = m' \times 4000 \times 57$(02) (95% ගැනීම සඳහා ලකුණු 01; දකුණුපස පදය සඳහා ලකුණු 01) $m = m' \times 60$ (60 න් ගුණ කිරීම සඳහා) $= 0.03 \text{ kg min}^{-1}$ $\lambda_{\min} = \frac{hc}{eV}$ (b) (i)(02) $=\frac{6.6\times10^{-34}\times3.0\times10^{8}}{10^{10}}$ 1.6×10-19×30×103 (නිවැරදි ආදේශය සඳහා) $= 4.125 \times 10^{-11} \text{ m} [(4.12 - 4.13) \times 10^{-11} \text{ m}]$ (ii) නැත අවම තරංග ආයාමය ඇති වන්නේ ඉලක්කය සමහ ගැටීමේදී ඉලෙක්ටෝන <u>එකවර</u> <u>නතර වන</u> විට *හෝ <u>එක් සට්ටනයකදී</u> ඉලෙක්ටෝනවල සියලුම වාලක ශක්තිය නැති* වූ විටය. එබැවින් λ_{min} ඉලක්ක දුවාය මත රඳා නොපවතී(01)

01 - භෞතික විදාහව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

(iii) නැත

.....(01)

domo octomas

සූතිකා ධාරාව වැඩි වීමෙන් ඉලෙක්ටෝනවල චාලක ශක්තිය වෙනස් නොවේ. (එය හුදෙක් ඉලක්කයට පහර දෙන ඉලෙක්ටෝන ගණන වැඩි කරයි)

.....(01)

(iv) <u>ඉහළ දුවාංකයක්</u> සහ <u>ඉහළ පරමාණුක අංකයක්</u> (කුමාංකයක්) ඇති බැවින් ඒවා තෝරා ගනු ලැබේ

(එකකට ලකුණු 01 බැගින්)

......(02)

(c) (i) සම්පූර්ණ ශක්තිය = $5 \times 10^3 \times 0.01$

(ii) අවශෝෂණ මාතුාව = 50 0.5

= 50 J

.....(01)

.....(01)

(බෙදීම සඳහා)

.....(01)

= 100 Gy

(iii)ඊයම් (ලෙඩ්)/ ටංස්ටන්/ ටින් / බිස්මත් / ඇන්ටිමනි හෝ කොන්කීට්......(02)

01 - භෞතික විදාහව (ලකුණු දීමේ පටිපාටිය) | අ.පො.ස. (උ.පෙළ) විභාගය - 2024 |අවසන් සංශෝධන ඇතුළත් කළ යුතුව ඇත.

ශී ලංකා විභාග දෙපාතර්මෙන්තුව

 $\lambda = \frac{hc}{E}$

 $\lambda = \frac{1240}{1486}$ 1550

(ii)

(*d*) (i) X කිරණයේ ශක්තිය = -74 - (-1560) 1550 = 1486 eV

.....(01)

.....(01)

.....(01)

.....(02)

(ආදේශය සඳහා)(01)

= 0.84 nm (8. 0×10^{-10} m)

(e) ශක්තිය : දෘඪ X-කිරණවල මෘදු X-කිරණවලට වඩා වැඩි ශක්තියක් ඇත......(01)

විනිවිද යාමේ බලය : දෘඪ X – කිරණ දුවා8වල ගැඹුරට විනිවිද යාමට හැකිය හෝ මෘදු X – කිරණවලට සාපේක්ෂව දෘඪ X – කිරණවල විනිවිදීමේ බලය වැඩිය හෝ පුතිලෝම පුකාශය

Visit Online Panthiya YouTube channel to watch Combined Mathsand Chemistry Videos

www.onlinepanthiya.com