යියලු ම හිමිකම් ඇව්රිණි / முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

ල් ලංකා විතාහ දෙපාර්තමේත්තුව ල් ලංකා විතාහ දෙපාර්තමේන්තුව පැවැත්ත පැවැත්ත ක්රියා සහ දෙපාර්තමේන්තුව ල් ලංකා විතාහ දෙපාර්තමේන්තුව මුණාසනසර ප්රධාන දී නිතාහස්සන සහ ප්රධාන දී නිතාහස්සන ප්රධාන ප්ර

අධනයන පොදු සහනික පතු (උසස් පෙළ) විභාගය, 2017 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2017 ஓகஸ்று General Certificate of Education (Adv. Level) Examination, August 2017

හෞතික විදනව II பௌதிகவியல் II Physics II

[01]	0	TT
VI	0	
	-	

පැය තුනයි மூன்று மணித்தியாலம் Three hours

ව්භාග අංකය :	

වැදගත් :

- * මෙම පුශ්න පතුය පිටු 13 කින් යුක්ත වේ.
- ※ මෙම පුශ්න පතුය A සහ B යන කොටස් දෙකකින් යුක්ත වේ. කොටස් දෙකට ම නියමිත කාලය පැය තුනකි.
- 🔆 ගණක යන්තු භාවිතයට ඉඩ දෙනු නො ලැබේ.

A කොටස - වපුහගත රචනා (පිටු 2 - 7)

සියලු ම පුශ්නවලට පිළිතුරු මෙම පතුයේ ම සපයන්න. ඔබේ පිළිතුරු, පුශ්න පතුයේ ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නො වන බව ද සලකන්න.

B කොටස - රචනා (පිටු 8 - 13)

මෙම කොටස පුශ්න **හයකින්** සමන්විත වන අතර පුශ්න **හතරකට** පමණක් පිළිතුරු සැපයිය යුතු ය. මේ සඳහා සපයනු ලබන කඩදාසි පාවිච්චි කරන්න.

- * සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවසන් වූ පසු A සහ B කොටස් එක් පිළිතුරු පතුයක් වන සේ, A කොටස B කොටසට උඩින් තිබෙන පරිදි අමුණා, විභාග ශාලාධිපතිට භාර දෙන්න.
- # පුශ්න පතුයේ B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි

	දෙවැනි පතුය සද	දුහා
කොටස	පුශ්න අංක	ලැබූ ලකුණු
L	1	
A	2	
	3	
	4	
	5	
L	6	
	7 .	
В	. 8	
	9 (A)	
	9 (B)	
	10 (A)	
	10 (B)	
එකප	ව	

අවසාන ලකුණු

40000000		
ඉලක්කමෙන්		
අකුරෙන්		

ළත්තර පතු පරීක්ෂක 1
උත්තර පතු පරීක්ෂක 2
ලකුණු පරීක්ෂා කළේ

අධීක්ෂණය කළේ

A කොටස- වපුහගත රචනා

පුශ්න **හතරට ම** පිළිකුරු **මෙම පතුයේ ම** සපයන්න.

(ගුරුක්වජ ක්වරණය, $g = 10 \, \text{N kg}^{-1}$)

මෙම නීරයේ කිසිවක් කො ලියන්න

- 1. සූර්ණ මූලධර්මය භාවිත කරන පරීක්ෂණය සිදු කිරීම මගින්, අකුමවත් හැඩයක් සහිත ස්කන්ධය 60 g පුමාණයේ ඇති ගල් කැබැල්ලක ස්කන්ධය M සෙවීමට ඔබට පවසා ඇත. පරීක්ෂණය සිදු කිරීම සඳහා ඔබට පහත සඳහන් අයිතම පමණක් සපයා ඇත.
 - $m(=50~{
 m g})$ ස්කන්ධය ඇති පඩියක්
 - මීටර කෝදුවක්
 - පිහිදාරයක් සහ සුදුසු ලී කුට්ටියක්
 - නූල් කැබැලි
 - (a) මෙම පරීක්ෂණයේ පළමු පියවර ලෙස, පිහිදාරය මත මීටර කෝදුව සංතුලනය කිරීමට ඔබට පවසා ඇත. මෙම පියවරෙහි අරමුණ කුමක් ද?
 - (b) ඔබ පාඨාංකයක් ගැනීමට මොහොතකට පෙර, සංතුලන අවස්ථාව සඳහා සකසන ලද පරීක්ෂණාත්මක ඇටවුමෙහි රූප සටහනක් පහත පෙන්වා ඇති මේසය මත අඳින්න. සංතුලන ලක්ෂායේ සිට මනින ලද l_1 සහ l_2 (වඩා විශාල සංතුලන දිග l_1 ලෙස ගන්න.) සංතුලන දිගවල් රූප සටහනේ නිවැරදි ව ලකුණු කරන්න. අයිතම නම් කරන්න.

]මේසය

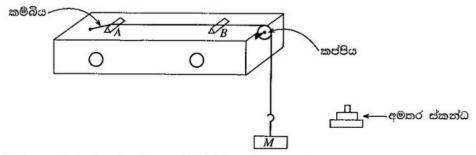
(c) පද්ධතිය සංකූලනය වී ඇති වීට l_2 සඳහා පුකාශනයක් $m,\,M$ සහ l_1 ඇසුරෙන් ලියා දක්වන්න.

ගැනීමේ දී සෑම විට ම මීටර කෝදුවේ කුමන ස්ථානය ඔබ පිහිදාරය මත කබන්නේ ද?

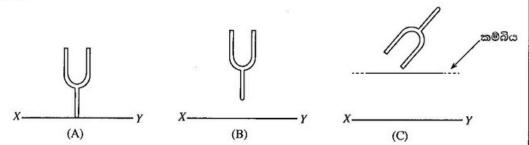
(d) මෙම පරීක්ෂණයේ දී ඔබ පුස්තාරයක් ඇඳිය යුතු යැයි සිතන්න. l_1 සහ l_2 සඳහා වෙනස් පාඨාංක යුගලයක්

(e) M ස්කන්ධය සෙවීම සඳහා ඔබ විසින් (1) රූපයේ පෙන්වා ඇති ආකාරයේ පුස්තාරයක් අඳිනු ලැබුවේ යැයි සිතන්න.

10 10 20 30 40 l₁(× 10⁻² m)


AL	/201	17/01	-S-	ш	(\mathbf{A})	١

L/2017/01	I-S-II(A)	- 3 -	ව්හාග අංකය:	
(i)	මෙම පරීක්ෂණයේ දී මෙයට හේතුව කුමක්		ඨාංක නොගන්නා ලෙස ඔබට පවසා ඇස	සෙම නීරයේ කිසිවක් නො ලියන්න
(ii)			ානිමින් (1) රූපයේ දී ඇති පුස්තාරයෙ දු මගින් පුස්තාරය මත පැහැදිලි ව ලකුණු	
(iii)	ගල් කැබැල්ලේ ස්කන්ර	ධය M, කිලෝග්රෑම් වලින් ගණනය z	කරන්න.	
				Ş.
මසවීම රූප	මට ද ඔබට පවසා ඇත	ා. මෙම අවස්ථාව සඳහා භාවිත කළ	විත කර මීටර කෝදුවෙහි <i>m</i> ₀ ස්කන්ධය 3 හැකි පරීක්ෂණාත්මක ඇටවුමක සුදුද ගුරුත්ව කේන්දුය <i>G</i> ලෙස පැහැදිලි 8	9
ධාරිතාව ම ඇත. එහි කරන ලද ආධාරකයා තබා සම්ම කි්යාපිළිවේ සෙමින් ඒා පරීක්ෂණය සිසිලන නි (a) (i) ද	සවීමට භාවිත කළ හැකි තඹවලින් සෑදූ පියනක් ජලය, උෂ්ණත්වමානයා ක් අඩංගු වේ. මෙම ඇර වත පරීක්ෂණයේ දී භාවි වළක් අනුගමනය කරනු කාකාරව හමන සුළඟක ක්කීරීමේ වාසිය වනුයේ, සියමයේ වලංගුතාව ඔබර හිව්ටන් සිසිලන නියමය දී ඔබ ලබා ගන්නා පාඨ	් ලැබෙන විවෘත ජනේලයක් අසල ඉහළ උෂ්ණත්ව අන්තරයන් සඳහා නි ට සතයාපනය කළ හැකි වීමයි. සතාාපනය කිරීම සඳහා මෙම පරීක්ෂ ාංක මොනවා ද?	පන්වා ත්, රත් සඳහා අසල තත්මක මෙම සිව්ටන්	
100				,
(2)			


(ii)	උෂ්ණත්වමානයේ පාඨාංකය සහ කැලරිමීටරයේ බාහිර පෘෂ්ඨයේ උෂ්ණත්වය එක ම බව ම විශ්වසනීයත්වයෙන් ඔබට උපකල්පනය කර ගැනීමට ඉඩ ලබා දෙන ඔබ විසින් ඉටු කළ යුතු පරීක්ෂණාත්මක කිුිිියාපිළිවෙළ කුමක් ද?
(iii)	නිව්ටන් සිසිලන නියමය සතාහපනය කිරීම සඳහා ඔබ විසින් අඳිනු ලබන පුස්තාර දෙකෙහි දළ රූප සටහන් ඇඳ දක්වන්න. අදාළ ඒකක සහිත ව අක්ෂ නියම ආකාරයට නම් කරන්න.
	යට අදාළ පාඨාංක ගැනීමෙන් පසු, දෙන ලද දුවයක විශිෂ්ට තාප ධාරිතාව සෙවීමට දුවය සඳහා ද
	ත (a) හි භාවිත කළ කිුියාපිළිවෙළ ම නැවත සිදු කරනු ලැබේ.
(1)	මෙම පරීක්ෂණය සඳහා (a) කොටසේ භාවිත කළ කැලරිමීටරය ම භාවිත කිරීමට හේතුව කුමක් ද?
(ii)	එක ම කැලරිමීටරය භාවිත කිරීමට අමතරව මෙම පරීක්ෂණයේ දී සමාන ජල සහ දුව පරිමාවක් භාවිත කිරීමට හේතුව කුමක් ද?
(iii)	මන්ථය සහ පියන සහිත කැලරිමීටරයේ ස්කන්ධය සහ විශිෂ්ට තාප ධාරිතාව පිළිවෙළින් m හා s වේ. දවයේ ස්කන්ධය සහ විශිෂ්ට තාප ධාරිතාව පිළිවෙළින් m_l හා s_l වේ. දී ඇති උෂ්ණත්ව පරාසයක දී දුවය සමග කැලරිමීටරයේ තාපය හානිවීමේ මධාෘක ශිෂුතාව සහ උෂ්ණත්වය පහළ බැසීමේ මධාෘක ශිෂුතාව පිළිවෙළින් H_m සහ θ_m වේ. මෙම රාශි ඇසුරෙන්, H_m සහ θ_m අතර සම්බන්ධතාව ලියා දක්වන්න.
(iv)	$m=0.15~{ m kg}, s=400~{ m J}~{ m kg}^{-1}~{ m K}^{-1}$ සහ $m_l=0.25~{ m kg}$ වේ. කිසියම් උෂ්ණත්ව අන්තරයක දී ජලය සහිත කැලරිමීටරයේ තාපය හානිවීමේ මධාසක ශීසුතාව $90~{ m J}~{ m s}^{-1}$ බව සොයා ගන්නා ලදී. එම උෂ්ණත්ව අන්තරයේ දී ම දුවය සහිත කැලරිමීටරයේ උෂ්ණත්වය පහළ බැසීමේ මධාසක ශීසුතාව $0.125~{ m K}~{ m s}^{-1}$ බව සොයා ගන්නා ලදී. දුවයේ විශිෂ්ට තාප ධාරිතාව s_l සොයන්න.

මෙම තීරයේ කිසිවත් තො ලියන්න

3. ධ්වනිමානයක් සහ සරසුලක් භාවිතයෙන් එක් මිනුමක් පමණක් ලබා ගෙන දී ඇති කම්බියක ඒකක දිගක ස්කන්ධය සෙවීමට ඔබට පවසා ඇත. දී ඇති කම්බිය සවිකර ඇති, පාසල් විදහගාරයේ භාවිත කරන සම්මත ධ්වනිමාන ඇටවුමක් රූපයේ දැක්වේ. කම්බිය T ආතතියක් යටතේ A හා B සේතු දෙක අතර ඇද ඇත. මෙම ඇටවුමේ A සේතුව අවල වන අතර B සේතුව චලනය කළ හැකි ය. M භාර ස්කන්ධය වීචලනය කරමින් කම්බියේ ආතතිය වෙනස් කළ හැකි ය. දන්නා f සංඛ්‍යාතයක් සහිත සරසුලක් ඔබට සපයා ඇත.

- (a) මෙම පරීක්ෂණයේ දී සරසුලක් කම්පනය කිරීම නිසා අවට වාතයේ ඇති වන්නේ කුමන ආකාරයේ කම්පන ද?
- (b) ආතතිය T වන ලෙස ඇදි කම්බියේ ඒකක දිගක ස්කන්ධය m නම්, කම්බියේ ඇති වන තීර්යක් තරංගවල වේගය v සඳහා පුකාශනයක් T හා m ඇසුරෙන් ලියා දක්වන්න.
- (c) මෙම පරීක්ෂණයේ දී දෙන ලද සරසුල සමග මූලික ස්වරයෙන් අනුනාද වන කම්බියේ අනුනාද දිග (l) මැනීමට ඔබට නියමිතව ඇත. අනුනාද අවස්ථාව ලබා ගැනීමට රූපයේ පෙන්වා ඇති පරිදි කම්පනය කරන ලද සරසුලක් තැබීමට (A), (B) සහ (C) නම් කුම තුනක් තිබිය හැකි බව ශිෂායෙක් යෝජනා කළේ ය.

XY ධ්වතිමාන පෙට්ටියේ පෘෂ්ඨයෙන් කොටසක් නිරූපණය කරයි.

- (A) සරසුල XY ට ලම්බකව සහ XY සමග ස්පර්ශව තැබීම
- (B) සරසුල XY ට ලම්බකව XY සමග ස්පර්ශ නොවන සේ අල්ලා සිටීම
- (C) සරසුල ඇදි කම්බියට ඉහළින් අල්ලා සිටීම

අනුනාදය සඳහා උපරිම විස්තාරයක් ලබා ගැනීමට කම්පනය කරන ලද සරසුල තැබීමට ඔබ ඉහත කුම තුන අතුරෙන් කිනම් කුමය තෝරා ගන්නේ ද? [(A) හෝ (B) හෝ (C)]. ඔබේ තේරීමට හේතුව දෙන්න.

(d) අනුනාද අවස්ථාව පරීක්ෂණාත්මක ව අනාවරණය කර ගැනීමට මෙම පරීක්ෂණයේ දී ඔබ සාමානායෙන් භාවිත කරන අනෙක් අයිතමය ලියා දක්වන්න.

(e) **පුශස්තම** අනුනාද අවස්ථාව අනාවරණය කර ගැනීමට ඔබ අනුගමනය කරන පුධාන පරීක්ෂණාත්මක පියවරවල් ලියා දක්වන්න.

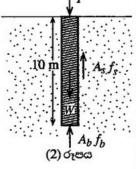
U	m සඳහා පුකාශනයක් f, l හා T ඇසුරෙන් ලබා ගන්න.	ගමම නිරයේ නිසිවත් නො ලි
(g) මෙම පරීක්ෂණයේ දී ඔබට ලැබුණු අනුනාද දිග කුඩා නම්, දී ඇති සරසුල සඳහා සැලකිය යුතු තරම් විශාල අනුනාද දිගක් ලබා ගැනීමට, ඔබ ඉහත ධ්වනිමාන ඇටවුම යෝග¤ ලෙස සකස් කර ගන්නේ කෙසේ ද?	
(h) $M=3.2~{ m kg}$ සහ $f=320~{ m Hz}$ වන විට අනුනාද දිග $25.0~{ m cm}$ බව සොයා ගන්නා ලදී. කම්බියේ ඒකක දිගක ස්කන්ධය ${ m kg~m}^{-1}$ වලින් සොයන්න.	
	to O(I) () to occupant of the	
	ත්වා ඇති (1) රූපයේ ඇටවුම භාවිත කර V චෝල්ට්මීටරයක අභාත්තර සිරෝධය r_0 සෙවීම සඳහා පරීක්ෂණයක් සැලසුම් කළ හැකි ය.	
R_0 පුති	යනු, කිසියම් අභාන්තර පුතිරෝධයක් සහිත කෝසෙක වී.ගා.බ. වේ. යනු අවල පුතිරෝධයක් ද R යනු X සහ Y හරහා සම්බන්ධ කර ඇති ශ්රෝධයක් ද වේ. A ඇමීටරයේ අභාන්තර පුතිරෝධය නොගිණිය හැකි මේ කුඩා බව උපකල්පනය කරන්න.	
(4	z) ඉහත (1) රූපයේ පෙන්වා ඇති පරිදි වෝල්ට්මීටරය XY අතර සම්බන්ධ කළ විට,	
	(i) R සහ r_0 පුතිරෝධ X සහ Y ලක්ෂා අතර පිහිටන්නේ කෙසේ දැයි පෙන්වීමට පරිපථ සංකේත භාවිත කර අදාළ පරිපථ කොටස පහත අඳින්න.	
	X Y	
	(ii) X සහ Y අතර සමක පුතිරෝධය, R_{XY} සඳහා පුකාශනයක් r_0 සහ R ඇසුරෙන් ලියා දක්වන්න.	
(b)) චෝල්ට්මීටරය දැන් $R_{\chi\gamma}$ පුතිරෝධය හරහා සම්බන්ධ කර ඇති ලෙස පෙනේ. මෙම තත්ත්වය යටතේ දී චෝල්ට්මීටරයේ පාඨාංකය, $R_{\chi\gamma}$ හරහා සම්බන්ධ කරන ලද පරිපූර්ණ චෝල්ට්මීටරයක් මගින් දක්වන	
	අගයට සමාන ද? (ඔව්/නැත) ඔබේ පිළිතුර සාධාරණීකරණය කරන්න.	

(c)	චෝල්ට්මීටරයේ පාඨාංකය V ද ඇමීටරය හරහා ධාරාව I ද නම්, I සඳහා පුකාශනයක් V , r_0 සහ R ඇසුරෙන් ලියා දක්වන්න.	නිරයේ කිසිවක් නො ලියන්න
(d)	y -අක්ෂයෙහි $rac{I}{V}$ සහ x -අක්ෂයෙහි $rac{1}{R}$ අතර පුස්තාරයක් ඇඳීම සඳහා (c) හි පුකාශනය නැවත සකසන්න.	
1000		
(e)	ඉහත (d) හි දී බලාපොරොත්තු වන පුස්තාරයෙහි හැඩය පහත දී ඇති අක්ෂ පද්ධතිය මත අඳින්න.	
	$\frac{I}{V}$	
	$0 \longrightarrow \frac{1}{R}$	
(f)	$m{R}$ පුස්තාරයෙන් උකභා ගත් අදාළ තොරතුර සහ $m{r}_0$ අතර සම්බන්ධතාව දැක්වෙන පුකාශනයක් ලියා	
	දක්වන්න.	
(g)	ඔබට විදාහගාරයේ දී පරීක්ෂණයක් සිදු කර ඉහත (e) හි සඳහන් කළ පුස්තාරය ඇඳීමට පවසා ඇත්නම්, R සඳහා ඔබ භාවිත කරන අයිතමය නම් කරන්න.	
(h)	D whatton and (1) toward and also what was and flowing a - 1000 O and	
(h)	R_0 පුතිරෝධය දැන් (1) රූපයේ දැක්වෙන පරිපථයෙන් ඉවත් කරන ලදැයි සිතන්න. $r_0=1000~\Omega$ ලෙස උපකල්පනය කරන්න. පහත සඳහන් චෝල්ටියතාවල විශාලත්වයන් සලකන්න.	
	• වෝල්ට්මීටරයේ කියවීම (V _j යැයි කියමු)	
	• චෝල්ට්මීටරය පරිපථයෙන් ඉවත් කළ විට XY හරහා ඇති වන චෝල්ට්යනාව (V ₂ යැයි කියමු)	
	• අභාපන්තර පුතිරෝධය $10~{ m M}\Omega$ වන සංඛාහාංක බහුමීටරයක් දැන් XY හරහා සම්බන්ධ කළහොත් බහුමීටරයෙහි පාඨාංකය (V_3 යැයි කියමු)	
	E_0, V_1, V_2 සහ V_3 , ඒවායේ විශාලත්වයන් ආරෝහණ ආකාරයට සිටින සේ ලියා දක්වන්න.	
		\cap
	V .	()

හිතලු ම හිමිකම් ඇව්රිකි / (ගුඟුට යනිට්பුලික හඩුනෙ Luby / All Rights Reserved)

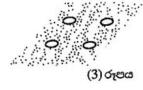
අධානයන පොදු සහනික පතු (උසස් පෙළ) විභාගය, 2017 අගෝස්තු கல்விப் பொதுத் தூரதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2017 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2017

ජම්බාරය


B කොටස - රචනා

පුශ්ත **හතරකට** පමණක් පිළිතුරු සපයන්න.

(ගුරුත්වජ ත්වරණය, $g = 10 \,\mathrm{N \, kg}^{-1}$)

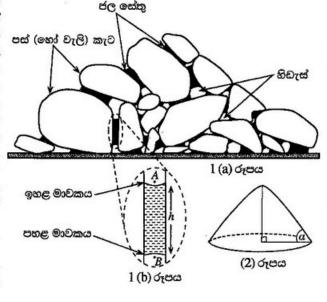

- 5. 'ජම්බාරයක්' යනු ගොඩනැගිලි සහ වෙනත් වනුහයන්ගේ අත්තිවාරම් සඳහා ටැම් ලෙස හඳුන්වන කණු පොළොව තුළට ගිල්වීමට යොදා ගන්නා අධික භාරයකි. (1) රූපයේ පෙන්වා ඇති පරිදි, කේබලයක් මගින් ජම්බාරය ඉහළට ඔසවා අතහැරිය විට එය ගුරුත්වය යටතේ නිදහසේ වැටී කණුවේ මුදුනේ ගැටේ. කණුව යෝගා ගැඹුරක් පොළොව තුළට තල්ලු වන තෙක් මෙම කියාවලිය නැවත නැවත සිදු කෙරේ.
 - (a) ස්කන්ධය $M=800~{
 m kg}$ වූ ජම්බාරයක් ඉහළට ඔසවා ඉන් පසු ස්කන්ධය $m=2400~{
 m kg}$ වූ සිලින්ඩරාකාර සිරස් කණුවක් මතට $h=5~{
 m m}$ උසක සිට නිශ්චලතාවයෙන් වැටෙන අවස්ථාවක් සලකන්න.
 - (i) ජම්බාරය වැටෙමින් පවතින විට සිදු වන ශක්ති පරිවර්තනය සඳහන් කරන්න.
 - (ii) ගැටුමට මොහොතකට පෙර ජම්බාරයේ වේගය ගණනය කරන්න.
 - (iii) ගැටුමට මොහොතකට පෙර ජම්බාරයේ ගමාතාවයේ විශාලත්වය ගණනය කරන්න.
 - (1) රූපය (b) කණුවේ මුදුන සමග ගැටීමෙන් පසු ජම්බාරය පොළා නොපනින අතර ඒ වෙනුවට එය තවදුරටත් කණුව සමග ස්පර්ශව කණුව පොළොව තුළට සිරස් ව එළවේ යැයි උපකල්පනය කරන්න. ගැටුම සිදු වී මොහොතකට පසු පද්ධතියේ ගමාතාව පමණක් සංස්ථිතික වේ යැයි ද උපකල්පනය කරන්න. පහත සඳහන් දෑ ගණනය කරන්න.
 - (i) ගැටුමෙන් මොහොතකට පසු ජම්බාරය සමග කණුවේ වේගය
 - (ii) ගැටුමෙන් මොහොතකට පසු ජම්බාරය සමග කණුවේ චාලක ශක්තිය
 - (iii) එක් එක් ගැටුමේ දී (b) (ii) හි ගණනය කරන ලද ශක්තියෙන් 40% ක් කණුව පොළොව තුළට යැවීම සඳහා පුයෝජනවත් ලෙස භාවිත කරයි. කිසියම් එක් ගැටුමකට පසු කණුව $0.2~\mathrm{m}$ ක් පොළොව තුළට ගමන් කරයි නම්, කණුව මත කිුියා කරන පුතිරෝධ බලයෙහි සාමානාය ගණනය කරන්න.
 - (c) (2) රූපයේ පෙන්වා ඇති ආකාරයට උස $10 \, \mathrm{m}$ සහ අරය $0.3 \, \mathrm{m}$ වූ ඒකාකාර සිලින්ඩරාකාර ලී කණුවක් සම්පූර්ණයෙන් ම වැලි පසක් තුළට තල්ලු කර ඇති අවස්ථාවක් සලකන්න. කණුව (2) රූපයේ පෙන්වා ඇති අවස්ථාවේ තබා ගැනීමේ දී එයට දැරිය හැකි උපරිම භාරය F,

 $F = A_s f_s + A_b f_b - W$ ලෙස ලිවිය හැකි ය. මෙහි W යනු කණුවේ බර ද A_s යනු පස සමග ස්පර්ශ වී ඇති කණුවේ වකු පෘෂ්ඨයේ වර්ගඵලය ද f_s යනු කණුවේ වකු පෘෂ්ඨයේ ඒකක වර්ගඵලයකට ඇති පුතිරෝධ බලයෙහි සාමානෲය ද A_b යනු කණුවේ පාදමේ හරස්කඩ වර්ගඵලය ද f_b යනු පොළොවෙන් කණුවේ පාදමෙහි ඒකක වර්ගඵලයක් මත ඇති කරන පුතිරෝධ බලයෙහි සාමානෲය ද වේ.

 $f_s = 5 \times 10^4 \ {\rm N \ m^{-2}}, \ f_b = 2 \times 10^6 \ {\rm N \ m^{-2}}$ සහ ලීවල ඝනත්වය $8 \times 10^2 \ {\rm kg \ m^{-3}}$ ද නම්, කණුව සඳහා F හි අගය ගණනය කරන්න. π හි අගය 3 ලෙස ගන්න.

(d) එක එකක් (c) හි භාවිත කළ කණුවට සමාන එහෙත් (c) හි භාවිත කළ කණුවේ අරයෙන් අර්ධයකට සමාන අරය ඇති කණු හතරක පද්ධතියක් වැලි පසක් තුළට සම්පූර්ණයෙන් ම තල්ලු කර ඇත. මෙය ඉහළින් බැලූ විට පෙනෙන ආකාරය (3) රූපයේ පෙන්වා ඇත.

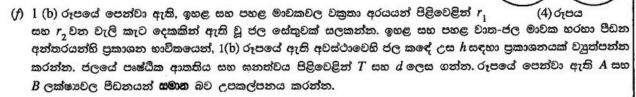
- (i) ඉහත (c) හි දී ඇති පරිදි $F \supset A_s f_s$, $A_b f_b$ සහ W වශයෙන් සංරචක තුනක් ඇත. මෙම කණු හතරේ පද්ධතිය, ඉදිකිරීමකට යොදා ගත් විට, ඉහත (c) හි අවස්ථාව සමග සැසඳීමේ දී කණු හතරේ පද්ධතිය සඳහා F හි කුමන සංරචකය එහි අගය වැඩි කිරීමට දායකත්වය දක්වයි ද?
- (ii) කණු හතරේ පද්ධතිය සඳහා F හි අගය ගණනය කරන්න.

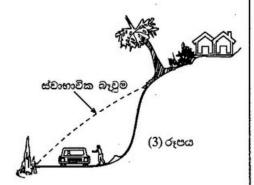

[නවවැනි පිටුව බලන්න.

- 6. (a) (i) නාභීය දුර f වූ තුනී උත්තල කාචයක් සරල අණ්වීක්ෂයක් ලෙස භාවිත කරයි. විශද දෘෂ්ටීයේ අවම දුර D වූ පුද්ගලයකු විසින් සරල අණ්වීක්ෂය භාවිතයෙන් පැහැදිලි පුතිබිම්බයක් දකින අවස්ථාව සඳහා කිරණ සටහනක් අදින්න. ඇස, f හා D හි පිහිටීම්, පැහැදිලි ව ලකුණු කරන්න.
 - (ii) සරල අණ්වීක්ෂයක රේඛීය විශාලනය සඳහා පුකාශනයක් f හා D ඇසුරෙන් වසුත්පන්න කරන්න.
 - (iii) ඉහත (i) හි සඳහන් පුද්ගලයා විසින් ඉතා කුඩා අකුරු කියවීම සඳහා නාභීය දුර 10 cm ක් වූ තුනී උත්තල කාචයක් සරල අණ්වීක්ෂයක් ලෙස භාවිත කරයි. අකුරක පැහැදිලි පුතිබිම්බයක් පෙනීමට කාචයේ සිට අකුරට ඇති දුර කුමක් විය යුතු ද? සරල අණ්වීක්ෂයේ රේඛීය විශාලනය ගණනය කරන්න. D හි අගය 25 cm ලෙස ගන්න.
 - (iv) කෞතුකාගාරයක තබා ඇති පෞරාණික ලේඛනයක් ආරක්ෂා කර ගැනීම සඳහා ඝනකම 2 cm වූ පාරදෘශය වීදුරු තහඩුවක් භාවිතයෙන් එය රාමු කර ඇත. එම ලේඛනය වීදුරු තහඩුවේ ඇතුල් මුහුණත සමග ස්පර්ශව ඇතැයි උපකල්පනය කරන්න. වීදුරුවල වර්තන අංකය 1.6 ලෙස ගන්න. වීදුරු තහඩුවේ ඉදිරි පෘෂ්ඨයේ සිට මෙම ලේඛනයේ දෘශය පිහිටීමට ඇති දුර සොයන්න.
 - (v) ඉහත (i) හි සඳහන් පුද්ගලයාම (iii) හි සඳහන් කළ සරල අණ්වීක්ෂය භාවිතයෙන් මෙම ලේඛනය කියවන්නේ යැයි සලකන්න.
 - (1) එම පුද්ගලයාට අකුරු පැහැදිලි ව පෙනෙන විට කාචය මගින් ඇති කළ, ලේඛනයේ පුතිබිම්බයට කාචයේ සිට ඇති දුර කුමක් ද?
 - (2) ලේඛනයේ අකුරු පැහැදිලි ව පෙනෙන විට කාචයේ සිට ලේඛනයට ඇති දුර කුමක් ද?
 - (b) (i) උපනෙත හා අවනෙත පැහැදිලි ව නම් කරමින් නක්ෂතු දුරේක්ෂයක සාමානාෘ සීරුමාරුව සඳහා සම්පූර්ණ කිරණ සටහනක් අදාළ සියලු ම දිගවල් දක්වමින් අඳින්න. f_o හා f_e පිළිවෙළින් අවනෙතේ හා උපනෙතේ නාභීය දුරවල් ලෙස ගන්න.
 - (ii) ඉහත (b) (i) හි අඳින ලද කි්රණ සටහන උපයෝගි කර ගනිමින් දුරේක්ෂය සාමානාඃ සීරුමාරුවේ ඇති විට කෝණික විශාලනය සඳහා පුකාශනයක් වුදුක්පන්න කරන්න.
 - (iii) නාභීය දුරවල් 100 cm හා 10 cm වූ තුනී උත්තල කාච දෙකක් භාවිත කරමින් නක්ෂතු දුරේක්ෂයක් සාදා ඇත. දුරේක්ෂය සාමානය සීරුමාරුවේ ඇති විට කෝණික විශාලනය ගණනය කරන්න.
 - (iv) නක්ෂතු දූරේක්ෂයක අවනෙත ලෙස විවර වර්ගඑලය විශාල වූ උත්තල කාචයක් භාවිත කිරීමේ පුායෝගික වාසිය කුමක් ද? ඔබේ පිළිතුර පැහැදිලි කරන්න.
- පහත සඳහන් ඡේදය කියවා පුශ්නවලට පිළිතුරු සපයන්න.

නිසි අධායනයකින් තොරව කඳුකර පුදේශවල සිදුවන මාර්ග ඉදිකිරීම් වැනි යටිතල පහසුකම් වැඩි දියුණු කිරීම නිසා පසෙහි ඇති වන අස්ථායිතාව, මාර්ග ගිලා බැසීම් සහ නායයෑම් වැනි අභිතකර තත්ත්වයන් ඇති කළ හැකි ය. වර්ණ කාලවල දී නායයෑම් රටේ බොහෝ පුදේශවල පොදු වාසනයක් බවට දැන් පත් ව ඇත. පසෙහි එක් සංඝටකයක් වන වැලිවල ස්ථායිතාව වැලිවල ඇති ජලය පුමාණය මත මහත් සේ රදා පවතී. තෙත වැලි උපයෝගි කර 'වැලි මාලිගා' වැනි වුහුහයන් ගොඩනගා ඇති ඕනෑම අයෙක් තෙත සහ වියළි වැලිවල ආසක්ති ගුණ විශාල ලෙස වෙනස් බව දනී. තෙත වැලි, සියුම් අංග සහිත වැලි මාලිගා ගොඩනැගීම සඳහා යොදා ගත හැකි නමුත් මෙම කියාවලියේ දී වියළි වැලි යොදා ගත් විට සම්පූර්ණයෙන් ම ගරාවැටීමකට ලක් වේ. ගුරුත්වය, සර්ෂණය සහ පෘෂ්ඨික ආතතිය වැනි භෞතික විදනවේ මූලික සංකල්ප මගින් පසෙහි හෝ වැලිවල ස්ථායිතාව හා සම්බන්ධ සංසිද්ධිත්වල සමහර අංග පැහැදිලි කළ හැකි ය.

පස සාමානාශයෙන් මැටි, රොන්මඩ සහ වැලි වැනි විවිධ විශාලත්වයන්ගෙන් යුත් බනිජමය අංශුන් සහ හිඩැස්වලින්

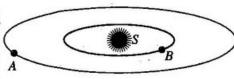

යුක්ත මීශුණයක් සහිත සවිවර මාධායක් වේ. 1 (a) රූපයේ පෙන්වා ඇති පරිදි හිඩැස්, ජලය හෝ වාතයෙන් පිරී පවකී. පසෙහි සවිවර ස්වභාවය පොළොව මත ඇකි බර වනුහයන් ගිලී යාම වැනි පුායෝගික ගැටලු ඇති කළ හැකි ය. මෙය ඇති වන්නේ පොළොව මත ඇති අධික භාරයන් මගින් පසෙහි හිඩැස් සම්පීඩනය කරන නිසා ය. පීසා කුලුනෙහි ඇලවීම සහ මීතොටමුල්ලේ කුණු කන්ද සහ උමා ඔය උමග සමීපයේ පොළොව ගිලා බැසීම මේ සඳහා උදාහරණ කිහිපයකි. ශයන කෝණය (repose angle) පසෙහි (හෝ වැලිවල) ස්ථායිතාව කී්රණය කරන ු තවත් වැදගත් පරාමිතියක් වේ. වියළි පස් බාල්දියක් දෘඪ සමතල බිමකට හිස් කළ විට පස් අංශු පහසුවෙන් ලිස්සා ඒවායේ එකිනෙක අතර ඝර්ෂණය නිසා (2) රූපයේ දැක්වෙන පරිදි කේතුක ආකාරයේ පස්ගොඩක් සාදයි. lpha කෝණය, ගොඩෙහි ශයන කෝණය ලෙස හඳුන්වන අතර එය යම් දුවායෙකට සෑදිය හැකි ශීඝුතම ස්ථායි බෑවුම වේ. ශයන කෝණය වැඩි කරමින් බෑවුමක පතුලේ පවතින පස් ඉවත් කිරීම බෑවුමෙහි අස්ථාවර ස්වභාවයක් ඇති කළ හැකි ය.


පසෙහි ඇති වැලි සවිවර මාධායයක් ලෙස සැලකිය හැකි ය. එය 1 (a) රූපයෙහි පෙන්වා ඇති ව්යුහයට සමාන අාකාරයේ අහඹු ලෙස දිශානතව ඇති විවිධ විශාලත්වයන්ගෙන් යුක්ත සංකීර්ණ කේශික නළ පද්ධතියකින් සමන්විත වේ. වැලි මාධායේ භෞතික ගුණ වෙනස් කරමින් කේශාකර්ෂණ බල, වැලි තුළට ජලය ඇදගනියි. තෙත වැලි, ඒවායේ කැට අතර කේශික ජල සේකු (capillary water bridges) ඇති කරයි (1 (a) රූපය බලන්න). මිලිමීටර පරිමාණයේ වැලි කැට අතර පවතින නැනෝමීටර පරිමාණයේ ජල සේකු වැලි කැට අතර ආකර්ෂණය අති විශාල ලෙස වැඩි කරයි. එය සිදු වන්නේ වැලි කැට අතර ජල සේකු හා බැඳුණු ආසක්ති බල නිසා ය. වියළි වැලි කැට සර්ෂණ බල නිසා ස්ථායිතාව පවත්වා ගන්නා අතර ඊට අමතර ව තෙත වැලි කැට ආසක්ති බල නිසා ද එකිනෙක ආකර්ෂණය කරයි. මෙම කේශික බල නිසා වැලි කැට අතර ආකර්ෂණ බලයේ වැඩි වීම, ශයන කෝණය වැඩි කිරීමට තුඩු දෙමින් වැලි කැටිති (sand clumps) සාදයි. කේශික සේතුවක ජල පෘෂ්ඨය අපසාරී වන අතර (රූපය 1 (b)) පෘෂ්ඨික ආතතිය නිසා ඇති වන 'කේශාකර්ෂණ කියාවලිය' වැලි කැටිති එකිනෙකට තදින් බද්ධව පවත්වා ගැනීමට උපකාරී වේ.

වර්ෂා කාලයේ දී ජලයෙන් සංකෘජ්ත පස, හිඩැස් සහ කැට මත අධික පීඩනයක් ඇති කරයි. හිඩැස් තුළ කුමයෙන් පීඩනය වැඩි වන විට, කැට අතර කේශික බල අඩු කරමින් ජල සේතුවල පෘෂ්ඨයේ වකුතාව වැඩි කරයි. පසට වැඩිපුර ජලය එකතු කිරීම මගින් කැට අතර හර්ෂණය සහ සවිශක්තිය අඩු විය හැකි අතර පසෙහි බර වැඩි වනුයේ නායයෑම්වලට සුදුසු ම තත්ත්වයන් ඇති කරවමින් ය. කැට අතර පෘෂ්ඨික ආතති බල අඩු කරන ආකාරයට අධික ලෙස කෘමිනාශක හා වල්නාශක භාවිතය නිසා පොළොවෙහි පස් තට්ටුවට සිදු කරන හානිය ද නායයෑමේ පුවණතාව විශාල ලෙස වැඩි කළ හැකි ය.

- (a) පසෙහි සහ වැලිවල ස්ථායිකාවට අදාළ සමහර අංග පැහැදිලි කිරීමට භාවිත කළ හැකි භෞතික විදාහවේ මූලික සංකල්ප තුනක් නම් කරන්න.
- (b) පසෙහි පුධාන ඛනිජ සංඝටක **තුන** ලියන්න.
- (c) මහාමාර්ගයක් ඉදිකිරීමක දී, (3) රූපයේ පෙන්වා ඇති පරිදි ස්වාභාවික බෑවුම වෙනස් කරමින් බෑවුමේ එක්කරා කොටසකින් පස් ඉවත් කර ඇත. මෙය නායයෑම් අවදානම් සහිත ස්ථානයකි. ඡේදයේ දී ඇති තොරතුරු භාවිත කර මෙය පැහැදිලි කරන්න.
- (d) වියළි වැලිවලට ජලය එකතු කිරීමෙන් වැලිවල ස්ථායිතාව විශාල ලෙස වැඩි කරයි. මේ සඳහා ප්‍රධානතම හේතුව පැහැදිලි කරන්න.
- (e) ගෝලාකාර වැලි කැට දෙකක් අතර ජල සේතුවක් (4) රූපයේ පෙන්වා ඇත. (4) රූපය ඔබේ පිළිතුරු පතුයට පිටපත් කර එක් එක් කැටය මත පෘෂ්ඨික ආතතිය නිසා ඇති වන සම්පුයුක්ත පතිකියා බලයන් (ඊතල භාවිතයෙන්) අඳින්න.

- (g) ඉහත (f) හි සඳහන් කළ අවස්ථාව සඳහා h උස ගණනය කරන්න. $r_1 = 0.8 \; \mathrm{mm}$, $r_2 = 1.0 \; \mathrm{mm}$, $T = 7.2 \times 10^{-2} \; \mathrm{N} \; \mathrm{m}^{-1}$ සහ $d = 1.0 \times 10^3 \; \mathrm{kg} \; \mathrm{m}^{-3}$ ලෙස ගන්න.
- (h) 1(b) රූපයේ පෙන්වා ඇති අවස්ථාවට වඩා A සහ B ලක්ෂාවල පීඩනයන් **වැඩි** අවස්ථාවක් සලකන්න. **මාවකයන්** දෙකත් සහිත ව 1(b) රූපය ඔබේ පිළිතුරු පතුයට පිටපත් කර නව මාවකයන්වල හැඩයන් ඇඳ ඒවා X සහ Y ලෙස **පැහැදිලි ව** නම් කරන්න.
- (i) 1(b) රූපයේ පෙන්වා ඇති A සහ B ලක්ෂාවල පීඩනයන් කුමයෙන් වැඩි වේ නම්, මාවකයන්වල අරයයන්ට, ස්පර්ශ කෝණයට සහ පෘෂ්ඨික ආතති බලයන් නිසා කැට අතර ඇති වන සම්පුයුක්ත පුතිකිුිිියා බලයන්ට කුමක් සිදු වේ ද? ඔබේ පිළිතුර පැහැදිලි කරන්න.
- (j) නායයෑම් ඇති වීමේ පුවණකාව වැඩි කිරීමට තුඩු දෙන, ඡේදයේ සඳහන් කර ඇති මිනිස් කි්යාකාරකම් දෙකක් ලියා දක්වන්න.

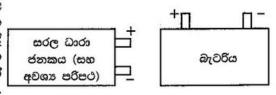


වැලි

වැලි

කැටය

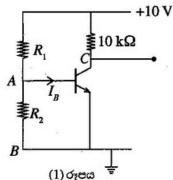
8. අපගේ චකුාවාටය වන ක්ෂීරපථයේ ඇති අනෙකුත් ගුහ පද්ධතිවල වාසයට සුදුසු ගුහලෝක පවතින්නේ දැයි සොයා බැලීම නාසා (NASA) කෙප්ලර් ගවේෂණයේ ප්‍රධාන අරමුණ වේ. ගවේෂණය මගින් තරු වටා කක්ෂගත ගුහලෝක විශාල සංඛ්‍යාවක් අනාවරණය කරගෙන ඇත. කක්ෂීය කාලාවර්තයන් පිළිවෙළින් T_A = පෘථිවි දින 300 සහ T_B = පෘථිවි දින 50 ක් වූ A සහ B නම් ගුහලෝක



දෙකකින් සමන්විත ගුහ පද්ධතියක් එවැනි එක් නිරීක්ෂණයකි. ගුහලෝක ඒකාකාර ගෝල බව සහ රූපයේ පෙන්වා ඇති පරිදි ස්කන්ධය M වූ S නම් තරුවක් වටා වෘත්තාකාර කක්ෂවල ගමන් කරන බව උපකල්පනය කරන්න. ගුහලෝක අතර ආකර්ෂණය නොසලකා හරින්න.

- (a) (i) B ගුහලෝකයේ කක්ෂීය වේගය (v_B) සඳහා පුකාශනයක් M,B ගුහලෝකයේ කක්ෂයේ අරය R_B සහ සර්වතු ගුරුත්වාකර්ෂණ නියතය G ඇසුරෙන් ව්වූත්පන්න කරන්න.
 - (ii) B ගුහලෝකයේ කාලාවර්තය T_B සඳහා පුකාශනයක්, R_B සහ v_B ඇසුරෙන් ලියා දක්වන්න.
 - (iii) මධායේ ඇති තරුවෙහි ස්කන්ධය M සඳහා පුකාශනයක් T_B , R_B සහ G ඇසුරෙන් වයුත්පන්න කරන්න.
 - (iv) $R_B = 0.3~{\rm AU}~(1~{\rm AU} = 1.5 \times 10^{11}~{\rm m})$ නම්, තරුවේ ස්කන්ධය M ගණනය කරන්න. $G = 6.7 \times 10^{-11}~{\rm m}^3~{\rm kg}^{-1}~{\rm s}^{-2}$ සහ $\pi^2 = 10$ ලෙස ගන්න.
- (b) (i) ඉහත (a) (iii) හි ලබා ගත් පුකාශනය භාවිත කර A සහ B ගුහලෝකවල කක්ෂයන්ගේ අරයයන් R_A, R_B සහ කාලාවර්ත T_A , T_B සම්බන්ධ කරමින් පුකාශනයක් වපුත්පන්න කරන්න.
 - (ii) දී ඇති අගයයන් භාවිත කර A ගුහලෝකයේ කක්ෂයේ අරය R_A ගණනය කරන්න.
- (c) පිටතින් පිහිටි A ගුහලෝකයේ ස්කන්ධය සහ අරය පිළිවෙළින් 23 m_E සහ $4.6\ r_E$ බව සොයා ගෙන ඇත. මෙහි m_F සහ r_E යනු පිළිවෙළින් පෘථිවියේ ස්කන්ධය සහ අරය වේ.
 - (i) A ගුහලෝකයේ පෘෂ්ඨය මත වූ ලක්ෂායක ගුරුත්වජ ත්වරණය g_A සඳහා පුකාශනයක්, m_E, r_E සහ G ඇසුරෙන් වයුත්පන්න කරන්න.
 - (ii) g_A සඳහා පුකාශනයක් පෘථිවි පෘෂ්ඨය මත වූ ලක්ෂායක ගුරුත්වජ ක්වරණය g_E ඇසුරෙන් ලබා ගන්න.
 - (iii) ස්කන්ධය $100~{
 m kg}$ වූ අභාවාවකාශ යානයක් A ගුහලෝකය මත ගොඩබැස්සවූයේ නම්, ගොඩබැස්සවීමෙන් පසු යානයේ බර ගුණනය කරන්න.
 - (iv) අපගේ සූර්යගුහ මණ්ඩලය හා සැසඳීමේ දී පිටතින් පිහිටි A ගුහලෝකය වාසයට සුදුසු කලාපයේ පවතී. A ගුහලෝකයේ ඝනත්වයේ සාමානාාය d_A සඳහා පුකාශනයක් පෘථිවියේ ඝනත්වයේ සාමානාාය d_E ඇසුරෙන් ලබා ගන්න.

(A) කොටසට හෝ (B) කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

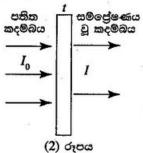

- (A) (a) සරල ධාරා මෝටරයක පුති විදාප්ත්ගාමක බලය (ව්.ගා.බ.) ඇති වන්නේ කෙසේ දැයි කෙටියෙන් පැහැදිලි කරන්න. ප්‍රති ව්.ගා.බ. හි (i) විශාලත්වය සහ (ii) දිශාව තීරණය කෙරෙන භෞතික විදාහවේ නියම පිළිවෙළින් නම් කරන්න.
 - (b) සරල ධාරා මෝටරයක්, බැටරියකින් I ධාරාවක් ඇද ගන්නා විට ඇති කරන E පුති වී.ගා.බ. සඳහා පුකාශනයක් ලියන්න. මෝටර දඟරයේ අභාාන්තර පුතිරෝධය r සහ බැටරියේ අගු අතර චෝල්ටීයතාව V වේ.
 - (c) $V=80~{
 m V}$ සහ $r=1.5~{
 m \Omega}$ නම්, මෝටරය $4.0~{
 m A}$ ධාරාවක් ඇද ගනිමින් සම්පූර්ණ භාරයක් සහිත ව කිුියාත්මක වන විට පහත රාශීන් ගණනය කරන්න.
 - (i) මෝටරය මගින් නිපදවන පුති වි.ගා.බ ය. (*E*)
 - (ii) මෝටරයට ලබා දෙන ක්ෂමතාව
 - (iii) මෝටරයේ පුතිදාන යාන්තික ක්ෂමතාව සහ කාර්යක්ෂමතාව (ඝර්ෂණය නිසා වන ශක්ති හානි නොසලකා හරින්න.)
 - (d) ඉහත (c) හි කියාත්මක වන මෝටරයේ r සහ ධාරාව ($4.0\,\mathrm{A}$) සඳහා දී ඇති අගයයන් දඟරය කාමර උෂ්ණත්වය වන $30\,^\circ\mathrm{C}$ හි පවතින විට ඇති අගයයන් බව උපකල්පනය කරන්න. මෝටරය පැය කිහිපයක් කියාත්මක කළ පසු V වෝල්ටීයතාව $80\,\mathrm{V}$ හි ම වෙනස් නොවී පැවතෙමින් දඟරයේ ධාරාව $3.6\,\mathrm{A}$ දක්වා අඩු වී ඇති බව සොයා ගන්නා ලදී. දඟරයේ නව උෂ්ණත්වය ගණනය කරන්න. දඟරය සාදා ඇති දුවායෙහි පුතිරෝධයේ උෂ්ණත්ව සංගුණකය $0\,^\circ\mathrm{C}$ හි දී $0.004\,^\circ\mathrm{C}^{-1}$ බව සලකන්න.
 - (e) විදසුත් මෝටර් රථවල, බැටරි මගින් එළවෙන සරල ධාරා මෝටර, රථයේ රෝද කරකැවීම සඳහා භාවිත කෙරේ. එවැනි වාහනවල තිරිංග යොදන කාලය තුළ දී එම මෝටරයම සරල ධාරා ජනකයක් ලෙස කි්යාත්මක වන පරිදි සාදා ඇති අතර වාහනයේ චාලක ශක්තියෙන් කොටසක් ජනකය එළවීම සඳහා භාවිත කරනු ලැබේ.

ඉන් පසු ජනකයේ පුතිදානය එම වාහනයේම බැටරිය නැවත ආරෝපණය කිරීමට භාවිත කෙරේ.

- (i) ඔබ සරල ධාරා මෝටරයක් සරල ධාරා ජනකයක් ලෙස කිුියාත්මක කරන්නේ කෙසේ ද?
- (ii) දී ඇති රූප සටහන් දෙක ඔබේ පිළිතුරු පතෙහි පිටපක් කර ගෙන සරල ධාරා ජනකයේ පුතිදානය, බැටරිය ආරෝපණය කිරීම සඳහා සම්බන්ධ කරන්නේ කෙසේ දැයි පෙන්වන්න.

- (\mathbf{B}) (a) npn ටුාන්සිස්ටරයක් සඳහා I_C,I_E සහ I_B අතර සම්බන්ධතාව දක්වන පුකාශනය ලියා දක්වන්න. සෑම සංකේතයකටම සුපුරුදු තේරුම ඇත.
 - (b) (1) රූපයේ පෙන්වා ඇති පරිදි සම්බන්ධ කර ඇති npn ටුාන්සිස්ටරය කි්යාකාරී විධියේ කි්යාත්මක වේ. ටුාන්සිස්ටරයේ ධාරා ලාභය 100 සහ එය ඉදිරි නැඹුරු වූ විට පාදම සහ විමෝචකය හරහා චෝල්ටීයතාව $V_{BE}=0.7\,$ V බව උපකල්පනය කරන්න.
 - (i) $5\,
 m V$ සංගුාහක චෝල්ටීයතාවක් ඇති කිරීමට අවශා පාදම ධාරාව I_R ගණනය කරන්න.
 - (ii) $R_1=12~{
 m k}\Omega$ නම් R_2 හි අගය ගණනය කරන්න. (මෙම ගණනය සඳහා I_R හි අගය නොගිණිය හැකි යැයි උපකල්පනය කරන්න.)

- (iii) $-10\,\mathrm{V}$ ක සෘණ ජව සැපයුම් වෝල්ටීයතාවක් සමග කිුයා කළ හැකි වන පරිදි (1) රූපයේ දී ඇති පරිපථය විකරණය කරන්න. ලක්ෂා සඳහා දී ඇති A සහ B නම් කිරීම් සහ $R_1,R_2,\,10\,\mathrm{k}\Omega$ භාවිත කර, විකරණය කරන ලද පරිපථය **අනුරූප ව** නිවැරදි ලෙස නැවත නම් කරන්න. සංගුාහක ධාරාවේ දිශාව, සහ R_1 සහ R_2 හරහා ධාරාවේ දිශාව ඊතල මගින් දක්වන්න.
- (c) ඔබ (b) (iii) යටතේ අඳින ලද **විකරණය කරන ලද පරිපථයේ** ටුාන්සිස්ටරයෙහි පාදම සහ විමෝචකය හරහා පුකාශ දියෝඩයක් සම්බන්ධ කළ යුතුව ඇත.
 - (i) පුකාශ දියෝඩයක් පරිපථයකට සම්බන්ධ කරන විට එය කරනු ලබන්නේ පුකාශ දියෝඩය පසු නැඹුරු වන ආකාරයට ය. පුකාශ දියෝඩයෙහි පරිපථ සංකේතය භාවිත කරමින් ඔබ විකරණය කරන ලද පරිපථයේ ටුාන්සිස්ටරයෙහි පාදම සහ විමෝචකය හරහා එය නිවැරදි ව සම්බන්ධ කරන ආකාරය පෙන්වන්න.
 - (ii) පුකාශ දියෝඩය විකරණය කරන ලද පරිපථයට නිවැරදි ව සම්බන්ධ කළ විට එය පාදම සහ විමෝචකය අතර පුතිරෝධය සැලකිය යුතු ලෙස වෙනස් කරන්නේ ද? ඔබේ පිළිතුර පැහැදිලි කරන්න.
 - (iii) කෙටි කාලයක් සහිත සෘජුකෝණාසුාකාර ආලෝක ස්පන්දයක් පුකාශ දියෝඩය මත පතිත වූ විට
 - (1) පරිපථයෙහි පුකාශ දියෝඩය හරහා ධාරාවේ දිශාව ඊතලයක් මගින් පෙන්වන්න.
 - (2) අාලෝක ස්පන්දය නිසා විමෝචකයට සාපේක්ෂව පාදමෙහි ඇති වන **වෝල්ටියතා** ස්පන්දයේ තරංග ආකෘතිය සහ පොළොවට සාපේක්ෂව සංගුාහකයෙහි ඇති වන **වෝල්ටියතා** ස්පන්දයේ තරංග ආකෘතිය ද පරිපථයේ අදාළ ස්ථානවල ඇඳ පෙන්වන්න.


10. (A) කොටසට හෝ (B) කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

- (A) එක්තරා නිවසක් සිය මුළුතැන් ගෙයහි සහ නාන කාමරවල සිදු කෙරෙන සේදීමේ කටයුතු සඳහා 50 °C හි පවතින උණු ජලය පැයකට 100 kg ක් පරිභෝජනය කරයි. විදුලි බොයිලේරුවක් මගින් ජනනය කෙරෙන 70 °C හි ඇති උණු ජලය බොයිලේරුවෙන් පිටත 30 °C හි ඇති ජලය සමග මිගු කර 50 °C හි ඇති ජලය නිපදවනු ලැබේ. ජලයේ විශිෂ්ට තාප ධාරිතාව සහ ඝනත්වය පිළිවෙළින් 4200 J kg⁻¹ K⁻¹ සහ 1000 kg m⁻³ ලෙස ගන්න. සියලු ම ගණනය කිරීම් සඳහා බාහිර පරිසරයට සිදු වන තාප හානිය හා බොයිලේරුවේ තාප ධාරිතාව නොගිණිය හැකි යැයි උපකල්පනය කරන්න.
 - (a) 50 °C හි ඇති ජලය 100 kg ක් නිපදවීමට බොයිලේරුවෙන් අවශා වන 70 °C හි පවතින උණු ජලය ස්කන්ධය ගණනය කරන්න.
 - (b) බොයිලේරුව සැලසුම් කර ඇත්තේ ඉහත (a) හි ගණනය කළ 70 °C හි පවතින උණු ජල පුමාණය බොයිලේරුවෙන් ඉවතට ගෙන එම පුමාණයම 30 °C හි ඇති ජලයෙන් නැවත පිරවූ විට, බොයිලේරුව තුළ ජලයේ උෂ්ණත්වය 66 °C ට වඩා පහළට නොයන පරිදි ය. මෙම තත්ත්වය සපුරාලීම සඳහා බොයිලේරුවට තිබිය යුතු අවම ජල ධාරිතාව (i) කිලෝග්රැම්වලින් සහ (ii) ලීටරවලින් ගණනය කරන්න.
 - (c) දවස ආරම්භයේ දී ධාරිතාව ලෙස (b) හි ගණනය කළ ජල ස්කන්ධයට සමාන ස්කන්ධයක් ඇති ජල පුමාණයකින් බොයිලේරුව පුරවා විදහුත් තාපකයක් මගින් $30~^{\circ}$ C සිට $70~^{\circ}$ C දක්වා නියත ශීසුතාවකින් රත් කරනු ලැබේ. රත් කිරීම පැයක දී සම්පූර්ණ කළ යුතු නම්, මෙම කාර්යය සඳහා තාපකයේ තිබිය යුතු ක්ෂමතාව ගණනය කරන්න.
 - (d) ඉහත (c) හි සඳහන් ආකාරයට ම ආරම්භක රත් කිරීම සිදු කිරීමෙන් පසු ඉහත (a) හි අවශාතාවට අනුව බොයිලේරුවෙන් ඉවතට ගත් උණු ජලයට හිලව් වන පරිදි 30 °C හි ඇති ජලයෙන් නැවත පිරවීම අඛණ්ඩව සිදු කෙරේ. බොයිලේරුව සැලසුම් කර ඇත්තේ පැයක කාලයක් තුළ බොයිලේරුවේ මධානා උෂ්ණත්වය 70 °C හි පවත්වා ගැනීම සඳහා වෙනත් කුඩා තාපකයකින් තාපය සපයන ආකාරයට ය. අවශා වන, කුඩා තාපකයේ ක්ෂමතාව ගණනය කරන්න.

- (B) (a) (i) (1) රූපයේ දී ඇත්තේ, X –කිරණ නළයක දළ සටහනකි. A සහ B ලෙස ලකුණු කර ඇති කොටස් නම් කරන්න.
 - (ii) රූපයේ සලකුණු කර ඇති D කොටස නම් D කර එය භාවිත කිරීමේ අරමුණ පහදන්න.
 - (iii) රූපයේ සලකුණු කර ඇති C කොටස නම කර එය භාවිත කිරීමේ අරමුණ පහදන්න.
 - (iv) X –කිරණ නිපදවෙන්නේ කෙසේ දැයි පැහැදිලි කරන්න.
 - (v) රික්තනය කරන ලද නළයක් භාවිත කිරීමට හේතුවක් දෙන්න.

- (i) A වෙත ළඟා වන ඉලෙක්ටුෝනයක උපරිම චාලක ශක්තිය keV ඒකකවලින් ගණනය කරන්න.
- (ii) ඉහත (b) (i) හි ගණනය කළ උපරිම ශක්තිය රැගත් ඉලෙක්ටෝනයක් එහි ශක්තියෙන් අර්ධයක් වැය කොට X –කිරණ ෆෝටෝනයක් නිපදවන අතර ඉතිරි ශක්තිය සම්පූර්ණයෙන් ම අවශෝෂණය කර ගනී. අවශෝෂණය කරන ශක්තියට කුමක් සිදු වේ දැයි පැහැදිලි කරන්න.
- (iii) ඉහත (b) (ii) කොටසේ නිපදවන X –කිරණ ෆෝටෝනයේ තරංග ආයාමය ගණනය කරන්න. [$h=6.6\times 10^{-34}\,\mathrm{J}\;\mathrm{s}\;$, $c=3\times 10^8\,\mathrm{m}\;\mathrm{s}^{-1}\;$ සහ $1\mathrm{eV}=1.6\times 10^{-19}\,\mathrm{J}\;$]
- (c) යම් දුවායක් හරහා Y-කිරණ ගමන් කිරීමේ දී එම දුවාය මගින් Y-කිරණ ෆෝටෝනයන්ගෙන් එක්කරා භාගයක් අවශෝෂණය කර ගනී. (2) රූපයේ දැක්වෙන පරිදි යම් දුවායක සනකම t වූ තහඩුවක් මතට ලම්බකව පතනය වන, තීවුතාව I_0 වන Y-කිරණ කදම්බයක් සලකන්න. අවශෝෂණය වීමේ පුතිඵලයක් ලෙස සම්පේෂණය වූ Y-කිරණවල තීවුතාව අඩු වන අතර, එය I මගින් දැක්වේ.

(1) රූපය

 I_0 හා I අතර සම්බන්ධතාව $\log\left(\frac{I_0}{I}\right)=0.434~\mu t$ මහින් දෙනු ලබන අතර, මෙහි μ යන්න, දී ඇති ශක්තියේ දී අදාළ γ –කිරණ සඳහා දී ඇති දුවායට නියතයක් වේ. පහත දී ඇති සියලු ම දත්ත $2~{
m MeV}~\gamma$ –කිරණ සඳහා වේ. $2~{
m MeV}~\gamma$ –කිරණ සඳහා වේ. $2~{
m MeV}~\gamma$ –කිරණවලට ඊයම සඳහා μ හි අගය $51.8~{
m m}^{-1}$ ලෙස ගන්න.

- (i) ඉහත 7 –කිරණවල නීවුතාව අර්ධයකින් අඩු කිරීම සඳහා අවශා වන ඊයම්වල ඝනකම ගණනය කරන්න.
- (ii) විකිරණ සේවකයකු සඳහා උපරිම අනුදත් මාතුාව (permissible dose) වසරකට 20~mSv වේ. පුද්ගලයකු තීවුතාව $10^{10}~\text{m}^{-2}\,\text{s}^{-1}$ වන ඉහත γ කිරණ කදම්බයකට නිරාවරණය වූ විට ලැබෙන මාතුාව වසරකට $2.5 \times 10^6~\text{mSv}$ වේ. උපරිම අනුදත් මාතුාව ඉක්මවා නොයන පරිදි විකිරණ සේවකයකුට නිරාවරණය විය හැකි, ඉහත γ කිරණ කදම්බයේ උපරිම තීවුතාව නීර්ණය කරන්න.
- (iii) රෝහලක රෝගීන්ට පුතිකාර කිරීම සඳහා $2 \text{ MeV } \gamma$ කිරණ පුභවයක් ස්ථාපිත කර ඇති විකිරණ විකිත්සක කාමරයක් සලකන්න. විකිරණ සේවකයෝ යාබද කාමරයේ වැඩ කටයුතු කරති. කාමර දෙක ඊයම් බිත්තියකින් වෙන් කර ඇත. යම් හෙයකින් පුභවයෙහි විකිරණ කාන්දුවීමක් ඇති වුවහොත් ඊයම් බිත්තියට ලම්බකව පතනය වන γ කිරණවල උපරිම තීවුතාව $2.56 \times 10^6 \text{ m}^{-2} \text{ s}^{-1}$ වේ. විකිරණ සේවකයන්ට කාමරය තුළ ආරක්ෂිත ව වැඩ කිරීම සඳහා ඊයම් බිත්තියට තිබිය යුතු අවම ඝනකම නීර්ණය කරන්න.

Visit Online Panthiya YouTube channel to watch Combined Maths and Chemistry Videos

www.onlinepanthiya.com