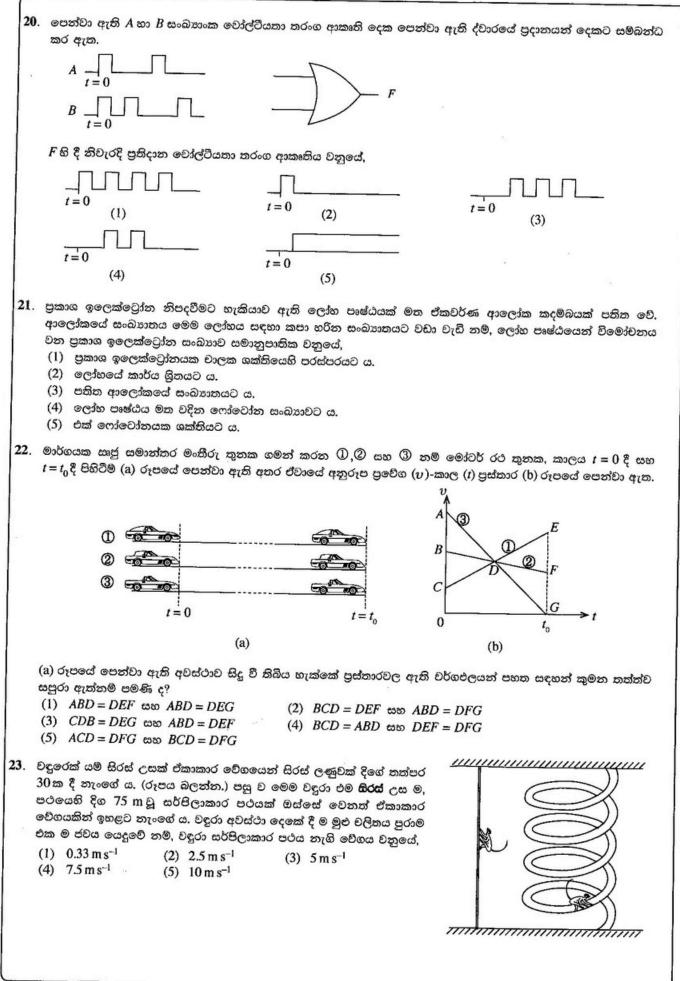

<u>.</u>	77778
L/2017/01/S-I	
30இ இ நிறுதை எசித்து (முழுப் பதிப்புரிமையுடையது/All Rights Reserved) இலங்கைப் பரிப்சாத் திணைக்களம் இலங்கைப் பதிரைக்கும் இலங்கைப் பரிப்சத்தில் இலங்கைப் பரிப்சாத் திணைக்களம் இலங்கைப் பதிரைக்கும் இலங்கைப் பரிப்சத்தில் Department of Examinations, Sri Lanka Department of இலங்கைப் Sri Uitar காகு காகு காகு காகு இலங்கைப் பரிப்சாத் திணைக்களம் இலங்கைப் பரிப்சத் திணைக்களம் இலங்கைப் பரிப்சத்தில் இலங்கைப் பரிப்சாத் திணைக்களம் இலங்கைப் பரிப்சத் திணைக்களம் இலங்கைப் பரிப்சத்தில் இலங்கைப் பரிப்சாத் திணைக்களம் இலங்கைப் பரிப்சத் திணைக்களம் இலங்கைப் பரிப்சத் திணை	கேபேர்கையேக்கும் இணை இலை கேப்பிக்களம் இக்களம் இலங்கைப் பரிட்சைத் தினைக்களம் ri Lanka Department of Examinations. Sri Lanka கைபி இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் பரிட்சைத் திணைக்களம்
சுவானை சைந்து கைக்கை சகு (උகக் சைகு) சினைக் கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்டை General Certificate of Education (Adv. Level) Examination	σ., 2017 φτωύή on, August 2017
66995ின විදහාව I பௌதிகவியல் I Physics I	பேடே கேமி இரண்டு மணித்தியாலம் Two hours
 උපදෙස්: * මෙම පුශ්න පතුයේ පුශ්න 50 ක්, පිටු 11 ක අඩංගු වේ. * සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. * පිළිතුරු පතුයේ නියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න. * පිළිතුරු පතුයේ පිටුපස දී ඇති උපදෙස් සැලකිලිමත් ව කියවන්න. * 1 සිට 50 තෙක් වූ එක් එක් පුශ්නය සඳහා දී ඇති (1), (2), (3), (4), (5 ඉතාමත් ගැළපෙන හෝ පිළිතුර තෝරා ගෙන, එය, පිළිතුරු පතුයේ පිටුපස (X) ලකුණු කරන්න. ගණක යන්තු භාවිතයට ඉඩ දෙනු නො ලැබේ. (ගුරුත්වජ ත්වරණය, g = 10 N kg⁻¹)) යන පිළිතුරුවලින් නිවැරදී හෝ දැක්වෙන උපදෙස් පරිදී කතිරයකින්
1. ධාරා ඝනත්වයේ ඒකකය වනුයේ, (1) A m ² (2) A m ⁻² (3) A m ⁻³ (4) A m ⁻¹	1 (5) A m
 a, b, c හා d යනු වෙනස් මාන සහිත භෞතික රායීන් වන අතර k මාන රහිත නිය පහත සඳහන් සම්බන්ධතා සලකා බලන්න. (A) ka³ = b (B) d = ac (C) a = kb ඉහත සම්බන්ධතා අතුරෙන් (1) B පමණක් මාන ලෙස වලංගු වේ. (2) C පමණක් මාන ලෙස (3) A සහ B පමණක් මාන ලෙස වලංගු වේ. (4) A සහ C පමණක් මාන (5) A, B සහ C සියල්ල ම මාන ලෙස වලංගු වේ. 	වලංගු වේ. ලෙස වලංගු වේ.
 3. X සහ Y දෙකෙළවරවල් විවෘතව තිබෙන සේ කම්බි රාමුවක් ලෙස නමා ඇති ඒක සිහින් කම්බියක් රූපයේ පෙන්වා ඇත. කම්බි රාමුවෙහි ගුරුත්ව කේන්දුය පිරි වඩාත් ම ඉඩ ඇති ලක්ෂාය වනුයේ, (1) A (2) B (3) C (4) D (5) E 	$ \begin{array}{c} $
4. සංඛාහතය f වන සරසුලක් සමග, එක් කෙළවරක් වැසූ නළයක් එහි මූලික සංඛා විවෘත කළ විට නළයේ එම දිග ම එහි මූලික සංඛාහතයෙන් අනුනාද වන සරසුං වනුයේ,	පාතයෙන් අනුනාද වේ. වසා ඇති කෙළවර ලෙහි සංඛාහතය ආසන්න වශයෙන් සමාන
(1) $\frac{f}{4}$ (2) $\frac{f}{2}$ (3) f (4) $2f$	(5) $4f$
 විභවමානයක් භාවිත නො කරනුයේ. (1) පුතිරෝධ සංසන්දනය කිරීම සඳහා ය. (2) වි.ගා.බ. යන් සංසන්දනය කිරීම සඳහා ය. (3) කෝෂයක අභාහන්තර පුතිරෝධය මැනීම සඳහා ය. (4) ඉතා කුඩා වි.ගා.බ. යන් මැනීම සඳහා ය. (5) විචලනය වන වෝල්ටීයතාවන් මැනීම සඳහා ය. 	
6. A සහ B යන දඬු දෙකක් කෙළවරින් කෙළවරට සම්බන්ධ කර ඇත. A දණ්ඩ තුළ ඇත. යං මාපාංකය A හි එම අගය මෙන් හතර ගුණයක් වූ ද එනමුත් A හි ඝන වේ නම්, B දණ්ඩ තුළ දී ධ්වනි තරංගයේ වේගය වනුයේ,	20000 400 2 400 200 200 200 4040
(1) $\frac{v}{4}$ (2) $\frac{v}{2}$ (3) v (4) $2v$	y (5) 4v
	[0දවැනි පිටුව බලැ


.

(5) A, B සහ C සියල්ල ම සතා වේ.
 (4) B ස

[තුන්වැනි පිටුව බලන්න.

		10 · ($\sim 10^3 \text{ kg m}^-$	³ වූ ඝන ලෝහ කුට්ටියක් වැවක	
. 6	ාරිමාව l m' සහ	ඝනත්වය ෭	5 X 10" Kg III 13/2 10- 62 11	නුලේ යමතමින් පාකිරීමට රූපයේ කිලීමට රූපයේ	TIMUtte
8	පතුලෙහි නිශ්චලස	9 පවත. කුප 9 ආති අති	තළ යන හිලිග	යම් පුරවන ලද බැලුනයක පරිමාව	
9	පෙනවා ඇත පට	ද වයට යට දිනියම් සම	ග බැලනයේ	ස්කන්ධය නොසලකා හරින්න.	
6	කොටමණ ද : ය (ජලයේ ඝනත්වය	$= 1 \times 10^{3}$	$kg m^{-3}$		(He
	(1) $7 \mathrm{m}^3$	(2)	8 m ³	(3) 70 m^3	
	(4) 80 m^3		700 m ³		
	වර්තන අංකය 1	5 2 250	පුස්මයක එක්	පෘෂ්ඨයක රූපයේ පෙන්වා ඇති	පරිදි රිදී ආලේප කර A
	100 -	Our Amer			
	පරාවර්තනය වී (ආපසු එම ම	ාර්ගය ඔස්සේ	ම ගමන් කරයි. පහත සඳහන් කුමෘ	න අගය θ වලට වඩාත් 300
	ම ආසන්න වේ (ę?			
	(1) 37°	(2)	41°	(3) 49°	
	(4) 51°	(5)	56°		
					₹B
		0 000 0	JAG Based	ආරෝපණ වහාප්තියක් රූපයේ ද	ැක්වේ. X යනු
5.	S ගවුසීය පෘෂ්ඨය	යකින් වට දී	ද සංක්ථය කර	රහා පිටත දිශාවට සඵල විදයුත්	සාවය -2q
					•X
	<u>- අ</u> නම්, X අ	ාරෝපණය	වනුයේ,		·-2g
	-0 (1) 3 a	(2)	-2q	(3) - q	
	(1) $-3q$ (4) $+q$	(2)	+2q		
	(4) +9	(5)	. = 4		
	අවස්ථිති සූර්ණ	ආරෝහණ	යට ලම්බක ඇ	ත් සිදුරු විද ඇත. තැටියේ ක්ෂයක් වටා තැටි තුනෙහි ටින සේ A, B සහ C තැටි	(A) (B) (C)
	අවස්ථිති සූර්ණ තුන සැකසූ විට (1) B, C, A	ආරෝහණ), වේ. (2)	යට ලම්බක අය පිළිවෙළට සි) A, B, C මේ	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව. (3) C, B, A වේ.	(A) (B) (C)
	අවස්ථිති සූර්ණ තුන සැකසූ විට (1) B, C, A (4) A, C, B	අාරෝහණ), වේ. (2) වේ. (5)	යට ලම්බක අ පිළිවෙළට සි) A, B, C ෝ) B, A, C ෝ	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව. (3) C, B, A වේ. ව.	
17.	අවස්ටීති භූර්ණ තුන සැකසූ විට (1) B, C, A (4) A, C, B	ආරෝහණ), වේ. (2) වේ. (5)	යට ලම්බක අය පිළිවෙළට සි) A, B, C ය) B, A, C ය	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව. (3) C, B, A වේ. ව.	භරයක සිටියි. සිරුරෙන් විකිරණ මගින් තාප
17.	අවස්ථිති කූර්ණ තුන සැකසූ විට (1) B, C, A (4) A, C, B ශරීරයේ මතුපිට හානිවීමේ සඑල	අාරෝහණ ව. වේ. (2) වේ. (5) ව උෂ්ණත්වය ල ශීඝුතාව ස	යට ලම්බක ආ පිළිවෙළට සි) A, B, C ණ) B, A, C ණ ය 30°C වූ පුද් යමානුපාතික ව	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව්. (3) C, B, A වේ. ව්. ගලයෙක් උෂ්ණත්වය 20°C වූ පරි ටනුයේ, (කෘෂ්ණ වස්තු විකිරණ තැ	සරයක සිටියි. සිරුරෙන් විකිරණ මගින් තාප ත්ත්ව යෙදිය හැකි බව උපකල්පනය කරන්න
	අවස්ථිති භූර්ණ තුන සැකසූ විට (1) B, C, A (4) A, C, B ශරීරයේ මතුපිට හානිවීමේ සඑද (1) 303 ⁴ -29	අංරෝහණ), වේ. (2) වේ. (5) ව උෂ්ණත්වය ල ශීසුතාව අ)3 ⁴ (2	යට ලම්බක අ පිළිවෙළට සි) A, B, C ණ) B, A, C ණ ය 30 °C වූ පුද් යමානුපාතික ව) 293 ⁴	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව්. (3) C, B, A වේ. ව්. ගලයෙක් උෂ්ණත්වය 20 °C වූ පරි ටනුයේ, (කෘෂ්ණ වස්තු විකිරණ තැ (3) 10 ⁴ (4) 3	සරයක සිටියි. සිරුරෙන් විකිරණ මගින් තාප ත්ත්ව යෙදිය හැකි බව උපකල්පනය කරන්න 303 ⁴ + 293 ⁴ (5) 30 ⁴ – 20 ⁴
	අවස්ථිති භූර්ණ තුන සැකසූ විට (1) B, C, A (4) A, C, B ශරීරයේ මතුපිට හානිවීමේ සඑද (1) 303 ⁴ -29	අංරෝහණ), වේ. (2) වේ. (5) ව උෂ්ණත්වය ල ශීසුතාව අ)3 ⁴ (2	යට ලම්බක අ පිළිවෙළට සි) A, B, C ණ) B, A, C ණ ය 30 °C වූ පුද් යමානුපාතික ව) 293 ⁴	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව්. (3) C, B, A වේ. ව්. ගලයෙක් උෂ්ණත්වය 20 °C වූ පරි ටනුයේ, (කෘෂ්ණ වස්තු විකිරණ තැ (3) 10 ⁴ (4) 3	සරයක සිටියි. සිරුරෙන් විකිරණ මගින් තාප ත්ත්ව යෙදිය හැකි බව උපකල්පනය කරන්න 303 ⁴ + 293 ⁴ (5) 30 ⁴ – 20 ⁴
	අවස්ථිති භූර්ණ තුන සැකසූ විට (1) B, C, A (4) A, C, B ශරීරයේ මතුපිට හානිවීමේ සඑද (1) 303 ⁴ -29	අංරෝහණ), වේ. (2) වේ. (5) ව උෂ්ණත්වය ල ශීඝුතාව ද)3 ⁴ (2 ඉරිපථයේ ටුං	යට ලම්බක ආ පිළිවෙළට සි) A, B, C ය) B, A, C ය ය 30 °C වූ පුද් යමානුපාතික ව) 293 ⁴ ත්සිස්ටරය කිය	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව්. (3) C, B, A වේ. ව්. හලයෙක් උෂ්ණත්වය 20 °C වූ පරිය හනුයේ, (කෘෂ්ණ වස්තු විකිරණ තැ (3) 10 ⁴ (4) 3 හකාරී ආකාරයේ නැඹුරු කර ඇති වී	සරයක සිටියි. සිරුරෙන් විකිරණ මගින් තාප ත්ත්ව යෙදිය හැකි බව උපකල්පනය කරන්න 303 ⁴ +293 ⁴ (5) 30 ⁴ −20 ⁴ විට සංගුාහක 9 V §4 kΩ
	අවස්ථිති කූර්ණ තුන සැකසූ විට (1) B, C, A (4) A, C, B ශරීරයේ මතුපිට හානිවීමේ සඑල (1) 303 ⁴ -29 පෙන්වා ඇති ස ධාරාව වනුයේ, (1) 0.60 mA	අාරෝහණ වේ. (2) වේ. (5) ව උෂ්ණක්වය ල ශීඝුතාව අ 03 ⁴ (2 0රිපථයේ ටුං ,	යට ලම්බක අ පිළිවෙළට සි) A, B, C ණ) B, A, C ණ ය 30 °C වූ පුද් යමානුපාතික ව) 293 ⁴ න්සිස්ටරය කිය) 0.80 mA	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව්. (3) C, B, A වේ. ව්. ගලයෙක් උෂ්ණත්වය 20 °C වූ පරි ටනුයේ, (කෘෂ්ණ වස්තු විකිරණ තැ (3) 10 ⁴ (4) 3	සරයක සිටියි. සිරුරෙන් විකිරණ මගින් තාප ත්ත්ව යෙදිය හැකි බව උපකල්පනය කරන්න 303 ⁴ +293 ⁴ (5) 30 ⁴ –20 ⁴ විට සංගුාහක
	අවස්ථිති භූර්ණ තුන සැකසූ විට (1) B, C, A (4) A, C, B ශරීරයේ මතුපිට හානිවීමේ සඑද (1) 303 ⁴ -29 පෙන්වා ඇති ප ධාරාව වනුයේ,	අාරෝහණ වේ. (2) වේ. (5) ව උෂ්ණක්වය ල ශීඝුතාව අ 03 ⁴ (2 0රිපථයේ ටුං ,	යට ලම්බක ආ පිළිවෙළට සි) A, B, C ය) B, A, C ය ය 30 °C වූ පුද් යමානුපාතික ව) 293 ⁴ ත්සිස්ටරය කිය	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව්. (3) C, B, A වේ. ව්. හලයෙක් උෂ්ණත්වය 20 °C වූ පරිය හනුයේ, (කෘෂ්ණ වස්තු විකිරණ තැ (3) 10 ⁴ (4) 3 හකාරී ආකාරයේ නැඹුරු කර ඇති වී	සරයක සිටියි. සිරුරෙන් විකිරණ මගින් තාප ත්ත්ව යෙදිය හැකි බව උපකල්පනය කරන්න 303 ⁴ +293 ⁴ (5) 30 ⁴ −20 ⁴ විට සංගුාහක 9 V §4 kΩ
	අවස්ථිති කූර්ණ තුන සැකසූ විට (1) B, C, A (4) A, C, B ශරීරයේ මතුපිට හානිවීමේ සඑල (1) 303 ⁴ -29 පෙන්වා ඇති ස ධාරාව වනුයේ, (1) 0.60 mA	අාරෝහණ වේ. (2) වේ. (5) ව උෂ්ණක්වය ල ශීඝුතාව අ 03 ⁴ (2 0රිපථයේ ටුං ,	යට ලම්බක අ පිළිවෙළට සි) A, B, C ණ) B, A, C ණ ය 30 °C වූ පුද් යමානුපාතික ව) 293 ⁴ න්සිස්ටරය කිය) 0.80 mA	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව්. (3) C, B, A වේ. ව්. හලයෙක් උෂ්ණත්වය 20 °C වූ පරිය හනුයේ, (කෘෂ්ණ වස්තු විකිරණ තැ (3) 10 ⁴ (4) 3 හකාරී ආකාරයේ නැඹුරු කර ඇති වී	සරයක සිටියි. සිරුරෙන් විකිරණ මගින් තාප ත්ත්ව යෙදිය හැකි බව උපකල්පනය කරන්න 303 ⁴ +293 ⁴ (5) 30 ⁴ −20 ⁴ විට සංගුාහක 9 V §4 kΩ
	අවස්ථිති කූර්ණ තුන සැකසූ විට (1) B, C, A (4) A, C, B ශරීරයේ මතුපිට හානිවීමේ සඑල (1) 303 ⁴ -29 පෙන්වා ඇති ස ධාරාව වනුයේ, (1) 0.60 mA	අාරෝහණ වේ. (2) වේ. (5) ව උෂ්ණක්වය ල ශීඝුතාව අ 03 ⁴ (2 0රිපථයේ ටුං ,	යට ලම්බක අ පිළිවෙළට සි) A, B, C ණ) B, A, C ණ ය 30 °C වූ පුද් යමානුපාතික ව) 293 ⁴ න්සිස්ටරය කිය) 0.80 mA	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව්. (3) C, B, A වේ. ව්. හලයෙක් උෂ්ණත්වය 20 °C වූ පරිය හනුයේ, (කෘෂ්ණ වස්තු විකිරණ තැ (3) 10 ⁴ (4) 3 හකාරී ආකාරයේ නැඹුරු කර ඇති වී	සරයක සිටියි. සිරුරෙන් විකිරණ මගින් තාප ත්ත්ව යෙදිය හැකි බව උපකල්පනය කරන්න 303 ⁴ +293 ⁴ (5) 30 ⁴ −20 ⁴ විට සංගුාහක 9 V §4 kΩ
18.	අවස්ථිති සූර්ණ තුන සැකසූ විට (1) B, C, A (4) A, C, B ශරීරයේ මතුපිට හානිවීමේ සඑ((1) 303 ⁴ -29 පෙන්වා ඇති ප ධාරාව වනුයේ, (1) 0.60 mA (4) 1.40 mA	අංරෝහණ වේ. (2) වේ. (5) ව උෂ්ණත්වං ල ශීඝුතාව අ 3 ⁴ (2 ඉරිපථයේ ටුං , (2	යට ලම්බක ආ පිළිවෙළට සි) A, B, C ය) B, A, C ය ය 30 °C වූ පුද් යමානුපාතික ව) 293 ⁴ න්සිස්ටරය කිය ද) 0.80 mA 5) 2.50 mA	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව්. (3) C, B, A වේ. ව්. හලයෙක් උෂ්ණත්වය 20 °C වූ පරිය හනුයේ, (කෘෂ්ණ වස්තු විකිරණ තැ (3) 10 ⁴ (4) 3 හකාරී ආකාරයේ නැඹුරු කර ඇති ව (3) 1.25 mA	සරයක සිටියි. සිරුරෙන් විකිරණ මගින් තාප ත්ත්ව යෙදිය හැකි බව උපකල්පනය කරන්න 303 ⁴ +293 ⁴ (5) 30 ⁴ −20 ⁴ විට සංගුාහක 9 V §4 kΩ
18.	අවස්ථිති භූර්ණ තුන සැකසූ විට (1) B, C, A (4) A, C, B ශරීරයේ මතුපිය හානිවීමේ සඑල (1) 303 ⁴ -29 පෙන්වා ඇති ස ධාරාව වනුයේ, (1) 0.60 mA (4) 1.40 mA	අංරෝහණ , වේ. (2) වේ. (5) ව උෂ්ණත්ව ල ශීඝුතාව ද 3 ⁴ (2 ග්රිපථයේ ටුං , (5 පරිපථයේ S	යට ලම්බක ආ පිළිවෙළට සි) A, B, C ය) B, A, C ය ය 30 °C වූ පුද් යමානුපාතික ව) 293 ⁴ න්සිස්ටරය කිය ද) 0.80 mA 5) 2.50 mA	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව්. (3) C, B, A වේ. ව්. හලයෙක් උෂ්ණත්වය 20 °C වූ පරිය හනුයේ, (කෘෂ්ණ වස්තු විකිරණ තැ (3) 10 ⁴ (4) 3 හකාරී ආකාරයේ නැඹුරු කර ඇති ව (3) 1.25 mA	සරයක සිටියි. සිරුරෙන් විකිරණ මගින් තාප ත්ත්ව යෙදිය හැකි බව උපකල්පනය කරන්න 303 ⁴ +293 ⁴ (5) 30 ⁴ −20 ⁴ විට සංගුාහක 9 V §4 kΩ
18.	අවස්ථිති භූර්ණ තුන සැකසූ විට (1) B, C, A (4) A, C, B ශරීරයේ මතුපිට හානිවීමේ සඑද (1) 303 ⁴ -29 පෙන්වා ඇති ප ධාරාව වනුයේ, (1) 0.60 mA (4) 1.40 mA	අංරෝහණ , වේ. (2) වේ. (5) ව උෂ්ණත්වය ල ශීඝුතාව ද 34 (2 හරිපථයේ ටුං (5 පරිපථයේ S ක් දැල්වේ.	යට ලම්බක ආ පිළිවෙළට සි) A, B, C ය) B, A, C ය ය 30 °C වූ පුද් සමානුපාතික ව) 293 ⁴ ත්සිස්ටරය කිය) 0.80 mA) 2.50 mA	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව්. (3) C, B, A වේ. ව්. හලයෙක් උෂ්ණත්වය 20 °C වූ පරිය හනුයේ, (කෘෂ්ණ වස්තු විකිරණ තැ (3) 10 ⁴ (4) 3 හකාරී ආකාරයේ නැඹුරු කර ඇති ව (3) 1.25 mA	සරයක සිටියි. සිරුරෙන් විකිරණ මගින් තාප ත්ත්ව යෙදිය හැකි බව උපකල්පනය කරන්2 303 ⁴ +293 ⁴ (5) 30 ⁴ −20 ⁴ විට සංගුාහක9 V ≩4 kΩ
18.	අවස්ථිති ඝූර්ණ තුන සැකසූ විට (1) B, C, A (4) A, C, B ශරීරයේ මතුපිට හානිවීමේ සඑද (1) 303 ⁴ -29 පෙන්වා ඇති ප ධාරාව වනුයේ, (1) 0.60 mA (4) 1.40 mA	අංරෝහණ , වේ. (2) වේ. (5) ව උෂ්ණත්වය ල ශීසුතාව අ 34 (2 ඉරිපථයේ ටුං (5 පරිපථයේ S ක් දැල්වේ. ' පමණක් දැ	යට ලම්බක ආ පිළිවෙළට සි) A, B, C ණ) B, A, C ණ ය 30 °C වූ පුද් තමානුපාතික ව) 293 ⁴ ත්සිස්ටරය කිය) 0.80 mA) 2.50 mA	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව්. (3) C, B, A වේ. ව්. හලයෙක් උෂ්ණත්වය 20 °C වූ පරිය හනුයේ, (කෘෂ්ණ වස්තු විකිරණ තැ (3) 10 ⁴ (4) 3 හකාරී ආකාරයේ නැඹුරු කර ඇති ව (3) 1.25 mA	සරයක සිටියි. සිරුරෙන් විකිරණ මගින් තාප ත්ත්ව යෙදිය හැකි බව උපකල්පනය කරන්2 303 ⁴ +293 ⁴ (5) 30 ⁴ −20 ⁴ විට සංගුාහක9 V ≩4 kΩ
18.	අවස්ථිති සූර්ණ තුන සැකසූ විට (1) B, C, A (4) A, C, B ශරීරයේ මතුපිට හානිවීමේ සඑ((1) 303 ⁴ -29 පෙන්වා ඇති ස ධාරාව වනුයේ, (1) 0.60 mA (4) 1.40 mA (4) 1.40 mA	අංරෝහණ ව. වේ. (2) වේ. (5) ව උෂ්ණත්වං ම ශීසුතාව ද 3 ⁴ (2 ග්රිපථයේ ටුං (5 පරිපථයේ S ක් දැල්වේ. පමණක් දැ ව පමණක් දැ	යට ලම්බක ආ පිළිවෙළට සි) A, B, C ණ) B, A, C ණ ය 30 °C වූ පුද් යමානුපාතික ව) 293 ⁴ න්සිස්ටරය කිය 2) 0.80 mA) 2.50 mA	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව්. (3) C, B, A වේ. ව්. හලයෙක් උෂ්ණත්වය 20 °C වූ පරිය හනුයේ, (කෘෂ්ණ වස්තු විකිරණ තැ (3) 10 ⁴ (4) 3 හකාරී ආකාරයේ නැඹුරු කර ඇති ව (3) 1.25 mA	සරයක සිටියි. සිරුරෙන් විකිරණ මගින් තාප ත්ත්ව යෙදිය හැකි බව උපකල්පනය කරන්2 303 ⁴ +293 ⁴ (5) 30 ⁴ −20 ⁴ විට සංගුාහක9 V ≩4 kΩ
18.	අවස්ථිති භූර්ණ තුන සැකභූ විට (1) B, C, A (4) A, C, B ශරීරයේ මතුපිය හානිවීමේ සඑල (1) 303 ⁴ -29 පෙන්වා ඇති ප ධාරාව වනුයේ, (1) 0.60 mA (4) 1.40 mA (4) 1.40 mA (2) B සහ C (3) B සහ D (4) B, C සහ	 අංරෝහණ වේ. (2) වේ. (5) ට උෂ්ණත්වංශ මේසුතාව ද 34 (2) ශ්ශුතාව ද 34 (2) ශ්ශුතාව ද (5) පරිපථයේ ටුං (2) (3) (2) (3) (4) (4) (5) (4) (5) (5) (4) (5) (5) (5) (5) (5) (5) (6) (6) (7) (7)	යට ලම්බක ආ පිළිවෙළට සි) A, B, C නේ) B, A, C නේ ය 30 °C වූ පුද් යමානුපාතික ව) 293 ⁴ න්සිස්ටරය කිය) 0.80 mA) 2.50 mA) 2.50 mA	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව්. (3) C, B, A වේ. ව්. හලයෙක් උෂ්ණත්වය 20 °C වූ පරිය හනුයේ, (කෘෂ්ණ වස්තු විකිරණ තැ (3) 10 ⁴ (4) 3 හකාරී ආකාරයේ නැඹුරු කර ඇති ව (3) 1.25 mA	සරයක සිටියි. සිරුරෙන් විකිරණ මගින් තාප ත්ත්ව යෙදිය හැකි බව උපකල්පනය කරන්න 303 ⁴ +293 ⁴ (5) 30 ⁴ −20 ⁴ විට සංගුාහක 9 V §4 kΩ
18.	අවස්ථිති සූර්ණ තුන සැකසූ විට (1) B, C, A (4) A, C, B ශරීරයේ මතුපිට හානිවීමේ සඑ((1) 303 ⁴ -29 පෙන්වා ඇති ස ධාරාව වනුයේ, (1) 0.60 mA (4) 1.40 mA (4) 1.40 mA	 අංරෝහණ වේ. (2) වේ. (5) ට උෂ්ණත්වංශ මේසුතාව ද 34 (2) ශ්ශුතාව ද 34 (2) ශ්ශුතාව ද (5) පරිපථයේ ටුං (2) (3) (2) (3) (4) (4) (5) (4) (5) (5) (4) (5) (5) (5) (5) (5) (5) (6) (6) (7) (7)	යට ලම්බක ආ පිළිවෙළට සි) A, B, C නේ) B, A, C නේ ය 30 °C වූ පුද් යමානුපාතික ව) 293 ⁴ න්සිස්ටරය කිය) 0.80 mA) 2.50 mA) 2.50 mA	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව්. (3) C, B, A වේ. ව්. හලයෙක් උෂ්ණත්වය 20 °C වූ පරිය හනුයේ, (කෘෂ්ණ වස්තු විකිරණ තැ (3) 10 ⁴ (4) 3 හකාරී ආකාරයේ නැඹුරු කර ඇති ව (3) 1.25 mA	සරයක සිටියි. සිරුරෙන් විකිරණ මගින් තාප ත්ත්ව යෙදිය හැකි බව උපකල්පනය කරන්2 303 ⁴ +293 ⁴ (5) 30 ⁴ −20 ⁴ විට සංගුාහක9 V ≩4 kΩ
18.	අවස්ථිති භූර්ණ තුන සැකභූ විට (1) B, C, A (4) A, C, B ශරීරයේ මතුපිය හානිවීමේ සඑල (1) 303 ⁴ -29 පෙන්වා ඇති ප ධාරාව වනුයේ, (1) 0.60 mA (4) 1.40 mA (4) 1.40 mA (2) B සහ C (3) B සහ D (4) B, C සහ	 අංරෝහණ වේ. (2) වේ. (5) ට උෂ්ණත්වංශ මේසුතාව ද 34 (2) ශ්ශුතාව ද 34 (2) ශ්ශුතාව ද (5) පරිපථයේ ටුං (2) (3) (2) (3) (4) (4) (5) (4) (5) (5) (4) (5) (5) (5) (5) (5) (5) (6) (6) (7) (7)	යට ලම්බක ආ පිළිවෙළට සි) A, B, C නේ) B, A, C නේ ය 30 °C වූ පුද් යමානුපාතික ව) 293 ⁴ න්සිස්ටරය කිය) 0.80 mA) 2.50 mA) 2.50 mA	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව්. (3) C, B, A වේ. ව්. හලයෙක් උෂ්ණත්වය 20 °C වූ පරිය හනුයේ, (කෘෂ්ණ වස්තු විකිරණ තැ (3) 10 ⁴ (4) 3 හකාරී ආකාරයේ නැඹුරු කර ඇති ව (3) 1.25 mA	සරයක සිටියි. සිරුරෙන් විකිරණ මගින් තාප ත්ත්ව යෙදිය හැකි බව උපකල්පනය කරන්න 303 ⁴ +293 ⁴ (5) 30 ⁴ −20 ⁴ විට සංගුාහක 9 V §4 kΩ
18.	අවස්ථිති භූර්ණ තුන සැකභූ විට (1) B, C, A (4) A, C, B ශරීරයේ මතුපිය හානිවීමේ සඑල (1) 303 ⁴ -29 පෙන්වා ඇති ප ධාරාව වනුයේ, (1) 0.60 mA (4) 1.40 mA (4) 1.40 mA (2) B සහ C (3) B සහ D (4) B, C සහ	 අංරෝහණ වේ. (2) වේ. (5) ට උෂ්ණත්වංශ මේසුතාව ද 34 (2) ශ්ශුතාව ද 34 (2) ශ්ශුතාව ද (5) පරිපථයේ ටුං (2) (3) (2) (3) (4) (4) (5) (4) (5) (5) (4) (5) (5) (5) (5) (5) (5) (6) (6) (7) (7)	යට ලම්බක ආ පිළිවෙළට සි) A, B, C නේ) B, A, C නේ ය 30 °C වූ පුද් යමානුපාතික ව) 293 ⁴ න්සිස්ටරය කිය) 0.80 mA) 2.50 mA) 2.50 mA	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව්. (3) C, B, A වේ. ව්. හලයෙක් උෂ්ණත්වය 20 °C වූ පරිය හනුයේ, (කෘෂ්ණ වස්තු විකිරණ තැ (3) 10 ⁴ (4) 3 හකාරී ආකාරයේ නැඹුරු කර ඇති ව (3) 1.25 mA	සරයක සිටියි. සිරුරෙන් විකිරණ මගින් තාප ත්ත්ව යෙදිය හැකි බව උපකල්පනය කරන්2 303 ⁴ +293 ⁴ (5) 30 ⁴ −20 ⁴ විට සංගුාහක9 V ≩4 kΩ
18.	අවස්ථිති භූර්ණ තුන සැකභූ විට (1) B, C, A (4) A, C, B ශරීරයේ මතුපිය හානිවීමේ සඑල (1) 303 ⁴ -29 පෙන්වා ඇති ප ධාරාව වනුයේ, (1) 0.60 mA (4) 1.40 mA (4) 1.40 mA (2) B සහ C (3) B සහ D (4) B, C සහ	 අංරෝහණ වේ. (2) වේ. (5) ට උෂ්ණත්වංශ මේසුතාව ද 34 (2) ශ්ශුතාව ද 34 (2) ශ්ශුතාව ද (5) පරිපථයේ ටුං (2) (3) (2) (3) (4) (4) (5) (4) (5) (5) (4) (5) (5) (5) (5) (5) (5) (6) (6) (7) (7)	යට ලම්බක ආ පිළිවෙළට සි) A, B, C නේ) B, A, C නේ ය 30 °C වූ පුද් යමානුපාතික ව) 293 ⁴ න්සිස්ටරය කිය) 0.80 mA) 2.50 mA) 2.50 mA	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව්. (3) C, B, A වේ. ව්. හලයෙක් උෂ්ණත්වය 20 °C වූ පරිය හනුයේ, (කෘෂ්ණ වස්තු විකිරණ තැ (3) 10 ⁴ (4) 3 හකාරී ආකාරයේ නැඹුරු කර ඇති ව (3) 1.25 mA	සරයක සිටියි. සිරුරෙන් විකිරණ මගින් තාප ත්ත්ව යෙදිය හැකි බව උපකල්පනය කරන්න 303 ⁴ +293 ⁴ (5) 30 ⁴ −20 ⁴ විට සංගුාහක 9 V §4 kΩ
18.	අවස්ථිති භූර්ණ තුන සැකභූ විට (1) B, C, A (4) A, C, B ශරීරයේ මතුපිය හානිවීමේ සඑල (1) 303 ⁴ -29 පෙන්වා ඇති ප ධාරාව වනුයේ, (1) 0.60 mA (4) 1.40 mA (4) 1.40 mA (2) B සහ C (3) B සහ D (4) B, C සහ	 අංරෝහණ වේ. (2) වේ. (5) ට උෂ්ණත්වංශ මේසුතාව ද 34 (2) ශ්ශුතාව ද 34 (2) ශ්ශුතාව ද (5) පරිපථයේ ටුං (2) (3) (2) (3) (4) (4) (5) (4) (5) (5) (4) (5) (5) (5) (5) (5) (5) (6) (6) (7) (7)	යට ලම්බක ආ පිළිවෙළට සි) A, B, C නේ) B, A, C නේ ය 30 °C වූ පුද් යමානුපාතික ව) 293 ⁴ න්සිස්ටරය කිය) 0.80 mA) 2.50 mA) 2.50 mA	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව්. (3) C, B, A වේ. ව්. හලයෙක් උෂ්ණත්වය 20 °C වූ පරිය හනුයේ, (කෘෂ්ණ වස්තු විකිරණ තැ (3) 10 ⁴ (4) 3 හකාරී ආකාරයේ නැඹුරු කර ඇති ව (3) 1.25 mA	සරයක සිටියි. සිරුරෙන් විකිරණ මගින් තාප ත්ත්ව යෙදිය හැකි බව උපකල්පනය කරන්න 303 ⁴ +293 ⁴ (5) 30 ⁴ −20 ⁴ විට සංගුාහක 9 V §4 kΩ
18.	අවස්ථිති භූර්ණ තුන සැකභූ විට (1) B, C, A (4) A, C, B ශරීරයේ මතුපිය හානිවීමේ සඑල (1) 303 ⁴ -29 පෙන්වා ඇති ප ධාරාව වනුයේ, (1) 0.60 mA (4) 1.40 mA (4) 1.40 mA (2) B සහ C (3) B සහ D (4) B, C සහ	 අංරෝහණ වේ. (2) වේ. (5) ට උෂ්ණත්වංශ මේසුතාව ද 34 (2) ශ්ශුතාව ද 34 (2) ශ්ශුතාව ද (5) පරිපථයේ ටුං (2) (3) (2) (3) (4) (4) (5) (4) (5) (5) (4) (5) (5) (5) (5) (5) (5) (6) (6) (7) (7)	යට ලම්බක ආ පිළිවෙළට සි) A, B, C නේ) B, A, C නේ ය 30 °C වූ පුද් යමානුපාතික ව) 293 ⁴ න්සිස්ටරය කිය) 0.80 mA) 2.50 mA) 2.50 mA	ක්ෂයක් වටා තැට තුනෙහ ටින සේ A, B සහ C තැටි ව්. (3) C, B, A වේ. ව්. හලයෙක් උෂ්ණත්වය 20 °C වූ පරිය හනුයේ, (කෘෂ්ණ වස්තු විකිරණ තැ (3) 10 ⁴ (4) 3 හකාරී ආකාරයේ නැඹුරු කර ඇති ව (3) 1.25 mA	සරයක සිටියි. සිරුරෙන් විකිරණ මගින් තාප ත්ත්ව යෙදිය හැකි බව උපකල්පනය කරන්2 303 ⁴ +293 ⁴ (5) 30 ⁴ −20 ⁴ විට සංගුාහක9 V ≩4 kΩ

[පස්වැනි පිටුව බලන්න.

77778

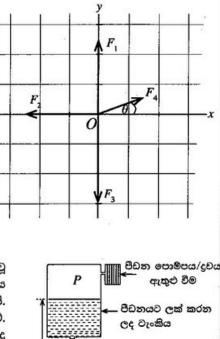
24. පෙන්වා ඇති රූපයේ F_1, F_2 සහ F_3 මගින් O ලක්ෂායෙන් කියා කරන x-y තලයේ පිහිටි බල තුනක අචල දෛශික නිරූපණය කෙරේ. F_4 යනු Oලක්ෂාය වටා එම x-y තලයේ ම භුමණය වන බලයක් නිරූපණය කරන දෛශිකයකි. F_4 දෛශිකය $\theta = 0^\circ, 90^\circ$ සහ 180° යන කෝණවල ඇති විට පහත කුමක් මගින් සම්පුයුක්ත දෛශිකයේ **දිශාව** වඩාත් හොඳින් නිරූපණය කෙරේ ද?

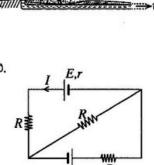
	0°	90°	180°
(1)	+	1	+
(2)	+	4	+
(3)	+	+	+
(4)	+	+	+
(5)	+	+	+

- 25. ඉහළින් තබා ඇති, පීඩනයට ලක්කරන ලද විශාල ටැංකියක සිට ඝනත්වය d වූ දුවයක්, තිරස් ව එලන ලද නළයක් දිගේ නියත v වේගයකින් ගමන් කරයි. නළය නොගැඹුරු මඩ ජලය සහිත පුදේශයක් හරහා රූපයේ පෙනෙන පරිදි ගමන් කරයි. ටැංකියේ දුව පෘෂ්ඨයට ඉහළ පීඩනය P වන අතර වායුගෝලීය පීඩනය P_0 වේ. නළයේ X හි කුඩා පැල්මක් ඇති වූයේ යැයි සිතමු. මඩ ජලය නළය තුළට කාන්දු වීමට අවශා තත්ත්වය වනුයේ, (ටැංකියේ දුව මට්ටම පොළොවේ සිට නියත hඋසක පවත්වාගෙන යන බවත් මඩ ජලය කාන්දු වීමෙන් v වේගය වෙනස් නොවන බවත් උපකල්පනය කරන්න.)
 - (1) $P + P_0 < hdg + \frac{1}{2}dv^2$ (2) $hdg \frac{1}{2}dv^2 < P_0$
 - (3) $P + hdg \frac{1}{2}dv^2 < P_0$ (4) $P + \frac{1}{2}dv^2 + hdg < P_0$

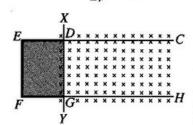
$$(5) \quad P + hdg < P_0$$

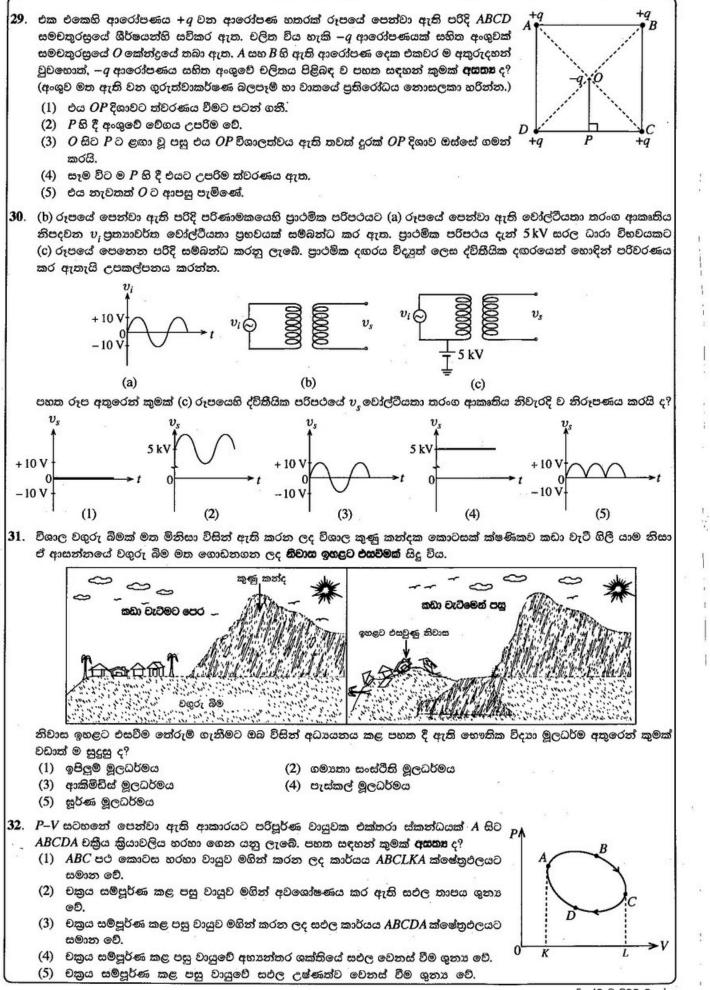
 පෙන්වා ඇති පරිපථයෙහි එක් එක් කෝෂයෙහි වි.ගා.බ. E ද අභාන්තර ප්‍රත්රෝධය r ද වේ. I ධාරාව දෙනු ලබන්නේ


(1) $\frac{2E}{R+r}$ (2) $\frac{2E}{4R+r}$ (3) $\frac{E}{2(R+r)}$ (4) $\frac{E}{R+r}$ (5) 0

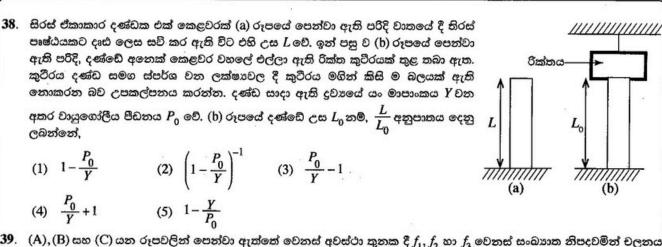

27. රූපයෙහි ඇති සුමට තිරස් CDEFGH පුඩු කොටස DEFG සන්නායක නොවන කොටසකින් ද CD සහ GH සන්නායක පීලි දෙකකින් ද සමන්විත ය. තුනී සෘජු XY සන්නායක කම්බියක් පීලි මත තබා DEFGD ප්රේශය තුළ පෘෂ්ඨික ආතතිය T වන සබන් පටලයක් සාදන ලදී. පෙන්වා ඇති දිශාව ඔස්සේ සාව ඝනත්වය B වූ චුම්බක ක්ෂේතයක් යොදා ඇත. සබන් පටලය නිශ්චල ව රඳවා තබා ගැනීමට DG හරහා ඇති කළ යුතු ධාරාවේ විශාලත්වය සහ දිශාව වනුයේ,

(1) $\frac{T}{2B}, D \rightarrow G$ දිශාවට (2) $\frac{2T}{B}, G \rightarrow D$ දිශාවට (3) $\frac{2T}{B}, D \rightarrow G$ දිශාවට (4) $\frac{4T}{B}, G \rightarrow D$ දිශාවට


(5)
$$\frac{4T}{B}$$
, $D \longrightarrow G$ දිශාවට


- 28. ආකූලතා තත්ත්ව ළඟා නොවන පරිදි සෑම තරලයකම දුස්සාවිතා සංගුණකය පවතින අගයට වඩා අඩු කළ විට පහත සඳහන් කුමක් සතා හොවේ ද?
 - (1) පටු නළ තුළ දුව ගලන ශීසුතා වඩා විශාල වේ.
 - (2) රුධිරය පොම්ප කිරීම සඳහා හෘදය මගින් සිදු කළ යුත්තේ වඩා අඩු කාර්යයකි.
 - (3) බටයකින් සිසිල් බීම උරා බීම වඩා පහසු වේ.
 - (4) ගමන් කරන මෝටර් රථ මත කි්යා කරන වාත රෝධය නිසා ඇති වන පුතිරෝධය අඩු වේ.
 - (5) වැහි බිංදු ලබා ගන්නා ආන්ත වේගයන් වඩා කුඩා වේ.

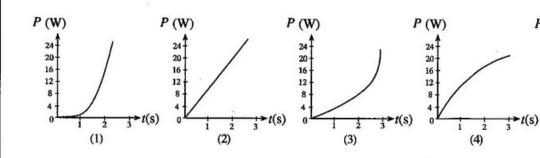
මඩ ජලය

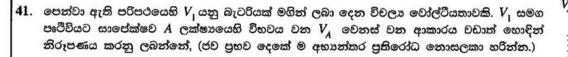

[ගත්මැනි පිටුව බලන්න.

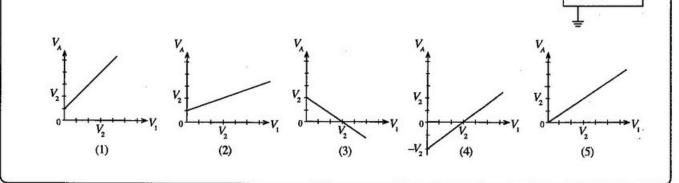
14

i

....


33.	වාදනය කළ විට එය නිශ්චිතවම 440 Hz හි ඇති වන ආකාරයට ය. බටනළා වාදකයෙක් වාතයේ ධ්වනි වේගය 333 ms ⁻¹ වන වෙනත් ස්ථානයක දී මෙම බටනළාවෙන් A ස්වරය වාදනය කරයි. මෙම බටනළාවෙහි A ස්වරය 440 Hz අගයක් ඇති සරසුලක් සමග මෙම නව ස්ථානයේ දී එකවර නාද කළහොත් බටනලා වාදකයාට තත්පර එකක දී නුගැසුම් කීයක් ඇසේ ද?
	(1) 2 (2) 4 (3) 8 (4) 10 (5) 12
34.	නම් සන්නායක පුඩු දෙකක් ඝර්ෂණය රහිත පරිවාරක පීල්ලක් මත තබා ඇත. පුඩුවලට පීල්ල දිගේ නිදහසේ චලනය විය හැකි අතර පුඩුවල තලයන් පීල්ලට ලම්බක වේ. පුඩු දෙක සහ පුඩු අතර තබා ඇති දණ්ඩ චුම්බකය ආරම්භයේ දී නිශ්චලව පවතී. ඉන් පසු දණ්ඩ චුම්බකය ක්ෂණිකව දකුණු දිශාවට රූපයේ පෙනෙන පරිදි චලනය කෙරේ. මෙහි පුතිඵලයක් ලෙස, (1) A සහ B පුඩු දෙක ම දකුණු දිශාවට ගමන් කරයි. (2) A සහ B පුඩු දෙක ම වම් දිශාවට ගමන් කරයි. (3) A සහ B පුඩු එකිනෙක දෙසට ගමන් කරයි. (4) A සහ B පුඩු එකිනෙකින් ඉවතට ගමන් කරයි. (5) A සහ B පුඩු දෙක නිශ්චලතාවයේ ම පවතී.
35.	C_1 පංශන් පෙන්වනු ලබන්නේ X, B, C, D සහ E නම් පරිවරණය කර ඇති තාප කටාර ජාලයක් වන අතර එහි C, D සහ E සර්වසම වේ. 100 °C හි කියාත්මක වන X කටාරය මගින් තාපය සපයමින් B, C, D සහ E කටාර හතර පෙන්වා ඇති උෂ්ණත්වවල පවත්වාගෙන යයි. තාපය සපයනු ලබන්නේ එක ම දුවායකින් සාදන ලද සර්වසම හරස්කඩ ක්ෂේතුඵල සහිත පරිවරණය කර ඇති තාප සන්නායක දඬු මගින් කටාර $100 °C$ සමබන්ධ කිරීමෙනි. දඬුවල දිගවල් පරිමාණයට ඇඳ නැත. X සහ B අතර සන්නායක X
	(1) $2L$ (2) $\frac{3L}{2}$ (3) L
	(4) $\frac{2L}{3}$ (5) $\frac{L}{2}$
36.	මිශුණ කුමය භාවිත කර අයිස්වල විලයනයේ විශිෂ්ට ගුප්ත තාපය (L) සෙවීමේ පරීක්ෂණයක දී සිසුවකුට සම්මත අගයට වඩා අඩු අගයක් L සඳහා ලැබිණ. L සඳහා අඩු අගයක් ලැබීමට හේතු, සිසුවා විසින් පහත පුකාශ මගින් පැහැදිලි කර ඇත. (A) පරීක්ෂණය කරමින් සිටින අතර කැලරිමීටරයේ බාහිර පෘෂ්ඨය මත තුෂාර තැන්පත්වීමක් නිසා විය හැකි ය. (B) කැලරිමීටරයට දැමීමට පෙර අයිස් කැබලි මත ඇති ජලය නිසි පරිදි පිසදා ඉවත් කර නොමැති නිසා විය හැකි ය. (C) භාවිත කළ අයිස්වල උෂ්ණත්වය 0 °C ට වඩා අඩු අගයක පැවතීම නිසා විය හැකි ය. ඉහත පුකාශ අතුරෙන්,
	(1) A පමණක් පිළිගත හැකි ය.
	(2) B පමණක් පිළිගත හැකි ය.
	(3) A සහ B පමණක් පිළිගත හැකි ය.
	 (4) B සහ C පමණක් පිළිගත හැකි ය. (5) A B සහ C පියන්න & පිළිගත හැකි ය.
37.	(5) A, B සහ C සියල්ල ම පිළිගත හැකි ය. උෂ්ණත්වය 35 °C හි පවතින දහඩිය සහිත ඇඳුම් ඇඳගත් පුද්ගලයකු පිළිවෙළින් 40 °C, 35 °C සහ 20 °C හි පවතින X, Y සහ Z නම් වූ වසන ලද විශාල කාමර තුනකින් එකකට ඇතුළු වීමට නියමිතව ඇත. සියලු ම කාමර ජල වාෂ්පවලින් සංතෘප්තව ඇති බව උපකල්පනය කරන්න. පහත පුකාශ සලකා බලන්න.
	(A) මෙම පුද්ගලයා X කාමරයට ඇතුඑ වුවහොත්, ආරම්භයේ දී දහඩියෙන් යම් පුමාණයක් වාෂ්ප වීමට පටන් ගනු
	(K) 666 grada k miloomo (kajo groena, 400 mon i groena e groena i grada e g
	 (B) මෙම පුද්ගලයා Y කාමරයට ඇතුළු වුවහොත්, දහඩිය වාෂ්ප නොවේ. (C) මෙම පුද්ගලයා Z කාමරයට ඇතුළු වුවහොත්, ආරම්භයේ දී දහඩියෙන් යම් පුමාණයක් වාෂ්ප වීමට පටත් ගනු
	ඇත. ඉහත පුකාශ අතුරෙන්,
	 A පමණක් සතා වේ. B පමණක් සතා වේ.
	 (1) A COSTAND CO. (2) B COSTAND CO. (3) A HOD B HODE CO. (4) B HOD C HODE CO. (4) B HOD C HODE CO.
	(5) A, B සහ C සියල්ල ම සතා වේ.
	[අවවැනි පිටුව බලන්න




39. (A),(B) සහ (C) යන රූපවලින් පෙන්වා ඇත්තේ වෙනස් අවස්ථා තුනක දී f_1, f_2 හා f_3 වෙනස් සංඛ්යාත නිපදවමින් චලනය වන S ධ්වනි පුභවයකි. O යනු ධ්වනි සංඛ්යාත අනාවරකයක් රැගත් නිරීක්ෂකයෙකි. එක් එක් අවස්ථාවේ දී පුභවය සහ නිරීක්ෂකයා චලනය වන වේගය සහ දිශාව රූප සටහන්වලින් පෙන්වා ඇත. අවස්ථා තුනේ දී ම අනාවරකය සංඛ්යාතය සඳහා එක ම අගය අනාවරණය කරයි නම්,

ධිවති පුභවය නිපදවූ සංඛාාතයන් ආරෝහණ පිළිවෙළට සකස් කළ විට එය වනුයේ, (1) f_1, f_2, f_3 (2) f_3, f_2, f_1 (3) f_1, f_3, f_2 (4) f_2, f_3, f_1 (5) f_2, f_1, f_3

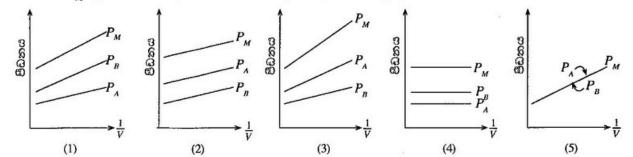
40. කාලය t = 0 දී පරිපථයෙහි S ස්විච්චිය වැසූ විට ජව සැපයුමෙහි V වෝල්ටීයතාව, කාලය (t) සමග $V = Kt^2$ සමීකරණයේ ආකාරයට වෙනස් වන අතර, මෙහි K හි විශාලත්වය 2 වේ. 4 Ω පුතිරෝධකයේ ක්ෂමතා හානිය (P), කාලය (t) සමග වෙනස් වන ආකාරය හොඳින් ම නිරූපණය වන්නේ,

[නවවැනි පිටුව බලන්න,

4Ω

P (W)

20

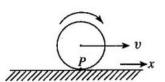

16

12

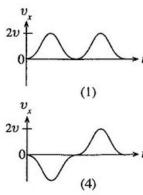
(5)

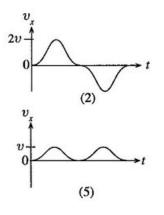
5 .

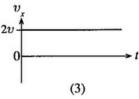
42. නියත උෂ්ණත්වයක දී V පරිමාවක් තුළ ඇති පරිපූර්ණ වායු මිශුණයක A වායුවේ මවුල n_A සහ B වායුවේ මවුල $n_B^{}(<\!n_A^{})$ අඩංගු වේ. ඉහත නියත උෂ්ණත්වයේ දී $rac{1}{V}$ සමග, A සහ B වායුවල ආංශික පීඩන පිළිවෙළින් P_A සහ $P_B^{}$ ද මිශුණයේ සමස්ත පීඩනය P_M ද වෙනස් වන ආකාරය වඩාත් හොඳින් නිරූපණය කරනු ලබන්නේ,



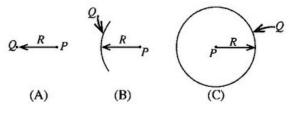
43. ගඟක් නියත $oldsymbol{v}$ පුවේගයකින් අනවරතව ගලා යයි. ජලයට වඩා අඩු ඝනත්වයක් සහිත සෘජුකෝණාසාකාර ලී කුට්ටියක් පළමුවෙන් ගං ඉවුරට සාපේක්ෂව නිශ්චල ලෙස ජල පෘෂ්ඨයට ඉහළින් තබා පසු ව රූපයේ පෙන්වා ඇති පරිදි පාවෙන තත්ත්වය ලබා ගන්නා තෙක් ජලයට arthetaසෙමෙන් පහත් කර නිදහස් කරන ලදී. v හි දිශාවට ලී කුට්ටියේ ආරම්භක වේගය ශුනා යැයි

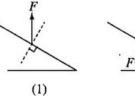

උපකල්පනය කරන්න. ඉනික්බිතිව කුට්ටියේ චලිතය සිදු වන කාලයේ දී කුට්ටිය මත කිුයා කරන ආචේගී බලයෙහි, ජලය මගින් කුට්ටිය මත ඇති වන දුස්සුාව් බලයෙහි සහ කුට්ටියෙහි ගමාාතාවයෙහි විශාලත්වයන් සඳහා පහත කුමක් සතා වේ ද? (වාත රෝධය නිසා ඇති වන බලපෑම නොසලකා හරින්න.)

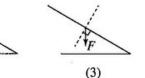

	ආවේගී බලය	දුස්සුාව් බලය	ගම්පතාවය
(1)	වැඩි අගයක සිට ශූනා දක්වා අඩු වේ.	වැඩි වී නියත වේ.	වැඩි අගයක සිට ගුනා දක්වා අඩු වේ.
(2)	වැඩි වී නියත වේ.	වැඩි අගයක සිට ශුනා දක්වා අඩු වේ.	වැඩි වී නියත වේ.
(3)	වැඩි අගයක සිට ශුනාs දක්වා අඩු වේ.	වැඩි වී නියත වේ.	වැඩි වී නියත වේ.
(4)	වැඩි වී නියත වේ.	වැඩි වී නියත වේ.	වැඩි අගයක සිට ශූනාප දක්වා අඩු වේ.
(5)	වැඩි අගයක සිට ශූනා දක්වා අඩු වේ.	වැඩි අගයක සිට ශූනා දක්වා අඩු වේ.	වැඩි වී නියත වේ.

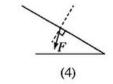

44. රූපයේ පෙන්වා ඇති පරිදි ඒකාකාර ඝන රෝදයක් ඒකාකාර v පුවේගයකින් සමතල පෘෂ්ඨයක් මත ලිස්සීමකින් තොරව පෙරළෙමින් පවතී. P යනු රෝදයේ පරිධිය මත පිහිටි ලක්ෂායකි. t=0 දී P ලක්ෂාය පවතින ස්ථානය ද රූපයේ පෙන්වා ඇත. පෘෂ්ඨයට සාපේක්ෂව P ලක්ෂායේ පුවේගයේ තිරස් සංරචකය ($v_{_{
m P}}$) කාලය (t) සමග

විචලනය වන ආකාරය වඩාත් හොඳින් නිරූපණය කරනු ලබන්නේ,




[දගවැනි පිටුව බලන්න.

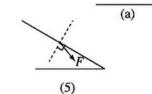

45. අවස්ථා තුනක දී ධන Q ආරෝපණයක වහාප්ති (A), (B) සහ (C) රූපවලින් දැක්වේ. (A) රූපයෙහි දී Q ආරෝපණය P ලක්ෂායේ සිට R දුරකින් තබා ඇති ලක්ෂාාකාර ආරෝපණයක් ලෙස පවතී. (B) රූපයෙහි දී Q ආරෝපණය, කේන්දුය P හි පිහිටන අරය R වන තුනී වෘත්තාකාර චාපයක ආකාරයට ඒකාකාරව වහාප්ත වී ඇත. (C) රූපයෙහි දී Q ආරෝපණය කේන්දුය P හි පිහිටන අරය R වූ තුනී වළල්ලක ආකාරයට ඒකාකාරව වහාප්ත වී ඇත. (C) රූපයෙහි දී Q ආරෝපණය කේන්දුය P හි පිහිටන අරය R වූ තුනී වළල්ලක ආකාරයට ඒකාකාරව වහාප්ත වී ඇත. (C) රූපයෙහි දී Q ආරෝපණය කේන්දුය P හි පිහිටන අරය R වූ තුනී වළල්ලක ආකාරයට ඒකාකාරව වහාප්ත වී ඇත. V_A, V_B, V_C සහ E_A, E_B, E_C යනු පිළිවෙළින් (A), (B) සහ (C) අවස්ථාවල දී P ලක්ෂාවල විභව සහ විදසුත් ක්ෂේතු තීවුතාවයන්හි විශාලත්ව නම්, දී ඇති පිළිතුරුවලින් කුමක් සතා වේ ද?


5 6 - 1924	P ලක්ෂාවල විභව	P ලක්ෂාවල විදයුත් ක්ෂේත තීවුතාචයන්හි විශාලත්ව
(1)	$V_A > V_B > V_C$	$E_A > E_B > E_C$
(2)	$V_A > V_B > V_C$	$E_C > E_B > E_A$
(3)	$V_A = V_B = V_C$	$E_A = E_B = E_C$
(4)	$V_A = V_B = V_C$	$E_A = E_C > E_B$
(5)	$V_A = V_B = V_C$	$E_A > E_B > E_C$

46. (a) රූපයේ පෙනෙන පරිදි ආනත තලයක් මත ඍජුකෝණාසාකාර කුට්ටියක් නිශ්චලතාවයේ පවතී. ආනත තලය මත කුට්ටිය මගින් යෙදෙන F සම්පුයුක්ත බලයේ දිශාව වඩාත් ම හොඳින් නිරූපණය කරනු ලබන්නේ,

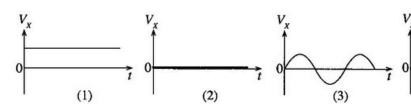
පුතාභාවර්ත

වෝල්ටීයතා


(4)

A

X-


C

ජනකය

47. අනාරෝපිත සමාන්තර තහඩු ධාරිතුකයක එක් තහඩුවකට සම්බන්ධ කර ඇති ප්‍රතාවර්ත වෝල්ට්යතා ජනකයක ප්‍රතිදාන විභවය (V), කාලය (t) සමග වෙනස් වන ආකාරය රූප සටහනේ පෙන්වා ඇත. ධාරිත්කයේ X අනෙක් තහඩුව සම්බන්ධ නොකර තබා ඇත. X තහඩුවේ විභවය (V_X) කාලය (t), සමග වෙනස් වන ආකාරය වඩාත් හොඳින් නිරුපණය කරනු ලබන්නේ,

(2)

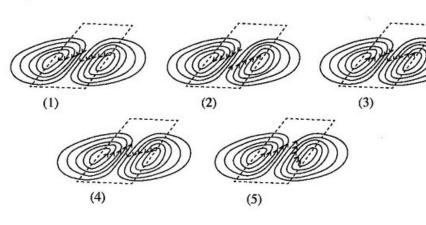
48. AB සහ CD මගින් නිරූපණය වන්නේ තිරස් තලයක් මත සවිකර ඇති එක . එකෙහි I ධාරාවන් ගෙන යන සමාන්තර ඍජු දිග සන්නායක කම්බි දෙකකි. L යනු රුපයේ පෙන්වා ඇති පරිදි එම නිරස් තලයේ ම තබන ලද සම්වතුරසුාකාර සන්නායක පුඩුවකි. XY යනු AB සහ CD අතර මධා රේඛාව වේ. L පුඩුව CD දෙසට නියත වේගයකින් එම තලයේ ම ගමන් කරන විට කර ඇති පහත පුකාශ සලකා බලන්න.

- (A) පුඩුව XY දෙසට ගමන් කරන විට එහි ප්රීත ධාරාව කුමයෙන් වැඩි වේ.
- (B) පුඩුව තුළ පේරිත ධාරාවේ දිශාව සෑම විට ම දක්ෂිණාවර්ත වේ.
- (C) පුඩුවේ PQ මධා රේඛාව XY රේඛාව හරහා ගමන් කරන විට එම මොහොතේ පුඩුව තුළ පේරිත ධාරාව ශුනා වේ.

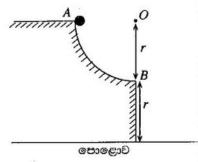
ඉහත පුකාශ අතුරෙන්,

- (1) A පමණක් සතා වේ.
- (2) B පමණක් සතා වේ.
- (3) A සහ B පමණක් සතා වේ.
 (4) B සහ C පමණක් සතා වේ.
- (5) A, B සහ C සියල්ල ම සතා වේ.

[එකොපොස්වැනි පිටුව බලන්න.


(5)

B


D

Х

49. චූම්බකයක උත්තර ධුැවය සහ දක්ෂිණ ධුැවය අතර රූපයේ පෙන්වා ඇති පරිදි ලෝහ තැටියක් දක්ෂිණාවර්තව භූමණය වේ. කඩ ඉරිවලින් පෙන්වා ඇති කුඩා පුදේශයකට සීමා වූ චුම්බක සාවයක් චුම්බකය මගින් ඇති කරයි. නිපදවන චුම්බක ක්ෂේතුය තැටියේ තලයට ලම්බක වේ. මෙම අවස්ථාවේ දී ඇති වන සුළි ධාරා පුඩුවල ධාරාවේ දිශාව නිවැරදි ව පෙන්වා ඇත්තේ පහත-කුමන රූප සටහන මගින් ද?

50. රූපයේ පෙන්වා ඇති පරිදි කේන්දුය $O \in qරය r \in Q$ වෘත්තාකාර පථයකින් හතරෙන් එකක් වන අචල ලෙස සම්බන්ධ කරන ලද ඝර්ෂණයෙන් තොර පථයක A ලක්ෂායේ සිට කුඩා ගෝලයක් නිශ්චලතාවයේ සිට නිදහස් කරනු ලැබේ. B ලක්ෂායේ දී ගෝලය තිරස් ව පථයෙන් පිටවන අතර ගුරුත්වය යටතේ වැටි එය C නම් කිසියම් ලක්ෂායක දී පොළොව මත ගැටේ (C පෙන්වා නැත). ගෝලය A සිට B දක්වා සහ B සිට C දක්වා ගමන් කිරීමට ගත් කාලයන් සහ ගමන් කළ දුරවල් පිළිවෙළිත් t_{AB} , t_{BC} සහ S_{AB} , S_{BC} නම්, පහත ඒවායින් කුමක් නිවැරදි ද?

- (3) $t_{AB} = t_{BC} \mod S_{AB} < S_{BC}$ (4) $t_{AB} < t_{BC} \mod S_{AB} = S_{BC}$
- (5) $t_{AB} = t_{BC} \mod S_{AB} = S_{BC}$

(1) $t_{AB} > t_{BC}$ සහ $S_{AB} < S_{BC}$

(2) $t_{AB} > t_{BC}$ සහ $S_{AB} > S_{BC}$

Visit Online Panthiya YouTube channel to watch Combined Maths and Chemistry Videos

www.onlinepanthiya.com