සියලු ම හිමිකම් ඇව්රිම් / (ආඥා් යුති්රාූ අතිකාංගය කාර්යා (All Rights Reserved)

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஎல்ற் General Certificate of Education (Adv. Level) Examination, August 2016

සංයුක්ත ගණිතය II இணைந்த கணிதம் II Combined Mathematics II 10 S II

ு மே வூகி மூன்று மணித்தியாலம் Three hours

උපදෙස් :

* මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

විභාග අංකය

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි හාවිත කළ හැකි ය.

* B කොටස:

පුශ්න පහකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය, B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B **කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.
- * මෙම පුශ්න පතුයෙහි g මහින් ගුරුත්වජ ත්වරණය දැක්වෙයි.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

කාටස	පුශ්න අංකය	ලකුණු
	1	
	2	
ľ	3	
ĺ	4	
A	5	
	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	· 17	
	එකතුව	
	පුතිශතය	

I පනුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

ඉලක්කමෙන්	
අකුරින්	

සංකේත අංක

උත්තර පතු පරීක්	ෂක	
පරීක්ෂා කළේ:	2	
අධීක්ෂණය කළේ:		

		A කොටස		
1.	 එක් කෙළවරක් O අවල ලක්ෂායකට ගැට ග අතෙක් කෙළවරෙහි ස්කන්ධය m වූ අංශුවන අංශුවක් u පුවේගයකින් තිරස් ව පළමු අංශුව චලිතය අරඹන පුවේගය සොයන්න. 	ක් සමතුලිතව එල්ලෙය <u>ි</u>	. ස්කන්ධය 2 <i>m</i> වූ තවත්	
	$u = \sqrt{g l}$ නම්, සංයුක්ත අංශුව එහි ආරම්භක වන බව පෙන්වන්න.	මට්ටමෙන් ඉහළට $rac{2l}{9}$	උපරිම උසක් කරා ළඟා	2m
2.	 රූපයේ දැක්වෙන පරිදි, ස්කන්ධය m වූ P අංශ මත එක ම සරල රේඛාවක් දිගේ පිළිවෙළින් : 	ඉවක් හා ස්කන්ධය 3 <i>m</i> 5u හා u වේගවලින් එස්	වූ Q අංශුවක් සුමට ති්රස් බිනෙක දෙසට චලනය වේ	. ඒවායේ
2.	 රූපයේ දැක්වෙන පරිදි, ස්කන්ධය m වූ P අංශ 	ඉවක් හා ස්කන්ධය 3 <i>m</i> 5 <i>u</i> හා <i>u</i> වේගවලින් එස් වෙළින් <i>u</i> හා <i>v</i> වේගවලි:	වූ Q අංශුවක් සුමට ති්රස් බිනෙක දෙසට චලනය වේ	. ඒවායේ
2.	2. රූපයේ දැක්වෙන පරිදි, ස්කන්ධය m වූ P අංශ මත එක ම සරල රේඛාවක් දිගේ පිළිවෙළින් : ගැටුමෙන් පසු ව, P හා Q එකිනෙකින් ඉවතට පිළිබ	ඉවක් හා ස්කන්ධය 3 <i>m</i> 5 <i>u</i> හා <i>u</i> වේගවලින් එස් වෙළින් <i>u</i> හා <i>v</i> වේගවලි: පන්වන්න.	වූ Q අංශුවක් සුමට ති්රස් බිනෙක දෙසට චලනය වේ	. ඒවායේ
2.	2. රූපයේ දැක්වෙන පරිදි, ස්කන්ධය m වූ P අංශ මත එක ම සරල රේඛාවක් දිගේ පිළිවෙළින් : ගැටුමෙන් පසු ව, P හා Q එකිනෙකින් ඉවතට පිළිගේ P හා Q අතර පුතාහාගති සංගුණකය $\frac{1}{3}$ බව හෙ	ඉවක් හා ස්කන්ධය 3 <i>m</i> 5 <i>u</i> හා <i>u</i> වේගවලින් එස් වෙළින් <i>u</i> හා <i>v</i> වේගවලි: පන්වන්න.	වූ Q අංශුවක් සුමට ති්රස් බිනෙක දෙසට චලනය වේ	. ඒවායේ
2.	2. රූපයේ දැක්වෙන පරිදි, ස්කන්ධය m වූ P අංශ මත එක ම සරල රේඛාවක් දිගේ පිළිවෙළින් : ගැටුමෙන් පසු ව, P හා Q එකිනෙකින් ඉවතට පිළිගේ P හා Q අතර පුතාහාගති සංගුණකය $\frac{1}{3}$ බව හෙ	ඉවක් හා ස්කන්ධය 3 <i>m</i> 5 <i>u</i> හා <i>u</i> වේගවලින් එස් වෙළින් <i>u</i> හා <i>v</i> වේගවලි: පන්වන්න.	වූ Q අංශුවක් සුමට ති්රස් බිනෙක දෙසට චලනය වේ	. ඒවායේ
2.	2. රූපයේ දැක්වෙන පරිදි, ස්කන්ධය m වූ P අංශ මත එක ම සරල රේඛාවක් දිගේ පිළිවෙළින් : ගැටුමෙන් පසු ව, P හා Q එකිනෙකින් ඉවතට පිළිගේ P හා Q අතර පුතාහාගති සංගුණකය $\frac{1}{3}$ බව හෙ	ඉවක් හා ස්කන්ධය 3 <i>m</i> 5 <i>u</i> හා <i>u</i> වේගවලින් එස් වෙළින් <i>u</i> හා <i>v</i> වේගවලි: පන්වන්න.	වූ Q අංශුවක් සුමට ති්රස් බිනෙක දෙසට චලනය වේ	. ඒවායේ
2.	2. රූපයේ දැක්වෙන පරිදි, ස්කන්ධය m වූ P අංශ මත එක ම සරල රේඛාවක් දිගේ පිළිවෙළින් : ගැටුමෙන් පසු ව, P හා Q එකිනෙකින් ඉවතට පිළිගේ P හා Q අතර පුතාහාගති සංගුණකය $\frac{1}{3}$ බව හෙ	ඉවක් හා ස්කන්ධය 3 <i>m</i> 5 <i>u</i> හා <i>u</i> වේගවලින් එස් වෙළින් <i>u</i> හා <i>v</i> වේගවලි: පන්වන්න.	වූ Q අංශුවක් සුමට ති්රස් බිනෙක දෙසට චලනය වේ	. ඒවායේ
2.	2. රූපයේ දැක්වෙන පරිදි, ස්කන්ධය m වූ P අංශ මත එක ම සරල රේඛාවක් දිගේ පිළිවෙළින් : ගැටුමෙන් පසු ව, P හා Q එකිනෙකින් ඉවතට පිළිගේ P හා Q අතර පුතාහාගති සංගුණකය $\frac{1}{3}$ බව හෙ	ඉවක් හා ස්කන්ධය 3 <i>m</i> 5 <i>u</i> හා <i>u</i> වේගවලින් එස් වෙළින් <i>u</i> හා <i>v</i> වේගවලි: පන්වන්න.	වූ Q අංශුවක් සුමට ති්රස් බිනෙක දෙසට චලනය වේ	. ඒවායේ
2.	2. රූපයේ දැක්වෙන පරිදි, ස්කන්ධය m වූ P අංශ මත එක ම සරල රේඛාවක් දිගේ පිළිවෙළින් : ගැටුමෙන් පසු ව, P හා Q එකිනෙකින් ඉවතට පිළිගේ P හා Q අතර පුතාහාගති සංගුණකය $\frac{1}{3}$ බව හෙ	ඉවක් හා ස්කන්ධය 3 <i>m</i> 5 <i>u</i> හා <i>u</i> වේගවලින් එස් වෙළින් <i>u</i> හා <i>v</i> වේගවලි: පන්වන්න.	වූ Q අංශුවක් සුමට ති්රස් බිනෙක දෙසට චලනය වේ	. ඒවායේ
2.	2. රූපයේ දැක්වෙන පරිදි, ස්කන්ධය <i>m</i> වූ <i>P</i> අංශ මත එක ම සරල රේඛාවක් දිගේ පිළිවෙළින් . ගැටුමෙන් පසු ව, <i>P</i> හා <i>Q</i> එකිනෙකින් ඉවතට පිළිගි <i>P</i> හා <i>Q</i> අතර පුතාහාගති සංගුණකය $\frac{1}{3}$ බව හේ	ඉවක් හා ස්කන්ධය 3 <i>m</i> 5 <i>u</i> හා <i>u</i> වේගවලින් එස් වෙළින් <i>u</i> හා <i>v</i> වේගවලි: පන්වන්න.) <u>Q</u>	වූ Q අංශුවක් සුමට තිරස් ඛිනෙක දෙසට චලනය වේ ත් චලනය වේ. u ඇසුරෙන්	. ඒවායේ
2.	2. රූපයේ දැක්වෙන පරිදි, ස්කන්ධය <i>m</i> වූ <i>P</i> අංශ මත එක ම සරල රේඛාවක් දිගේ පිළිවෙළින් . ගැටුමෙන් පසු ව, <i>P</i> හා <i>Q</i> එකිනෙකින් ඉවතට පිළිගි <i>P</i> හා <i>Q</i> අතර පුතාහාගති සංගුණකය $\frac{1}{3}$ බව හේ	ඉවක් හා ස්කන්ධය 3 <i>m</i> 5 <i>u</i> හා <i>u</i> වේගවලින් එස් වෙළින් <i>u</i> හා <i>v</i> වේගවලි: පන්වන්න.	වූ Q අංශුවක් සුමට තිරස් ඛිනෙක දෙසට චලනය වේ ත් චලනය වේ. u ඇසුරෙන්	. ඒවායේ
2.	2. රූපයේ දැක්වෙන පරිදි, ස්කන්ධය <i>m</i> වූ <i>P</i> අංශ මත එක ම සරල රේඛාවක් දිගේ පිළිවෙළින් . ගැටුමෙන් පසු ව, <i>P</i> හා <i>Q</i> එකිනෙකින් ඉවතට පිළිගි <i>P</i> හා <i>Q</i> අතර පුතාහාගති සංගුණකය $\frac{1}{3}$ බව හේ	ඉවක් හා ස්කන්ධය 3 <i>m</i> 5 <i>u</i> හා <i>u</i> වේගවලින් එස් වෙළින් <i>u</i> හා <i>v</i> වේගවලි: පන්වන්න.) <u>Q</u>	වූ Q අංශුවක් සුමට තිරස් ඛිනෙක දෙසට චලනය වේ ත් චලනය වේ. u ඇසුරෙන්	. ඒවායේ
2.	2. රූපයේ දැක්වෙන පරිදි, ස්කන්ධය <i>m</i> වූ <i>P</i> අංශ මත එක ම සරල රේඛාවක් දිගේ පිළිවෙළින් . ගැටුමෙන් පසු ව, <i>P</i> හා <i>Q</i> එකිනෙකින් ඉවතට පිළිගි <i>P</i> හා <i>Q</i> අතර පුතාහාගති සංගුණකය $\frac{1}{3}$ බව හේ	ඉවක් හා ස්කන්ධය 3 <i>m</i> 5 <i>u</i> හා <i>u</i> වේගවලින් එස් වෙළින් <i>u</i> හා <i>v</i> වේගවලි: පන්වන්න.) <u>Q</u>	වූ Q අංශුවක් සුමට තිරස් ඛිනෙක දෙසට චලනය වේ ත් චලනය වේ. u ඇසුරෙන්	. ඒවායේ
2.	2. රූපයේ දැක්වෙන පරිදි, ස්කන්ධය <i>m</i> වූ <i>P</i> අංශ මත එක ම සරල රේඛාවක් දිගේ පිළිවෙළින් . ගැටුමෙන් පසු ව, <i>P</i> හා <i>Q</i> එකිනෙකින් ඉවතට පිළිගි <i>P</i> හා <i>Q</i> අතර පුතාහාගති සංගුණකය $\frac{1}{3}$ බව හේ	ඉවක් හා ස්කන්ධය 3 <i>m</i> 5 <i>u</i> හා <i>u</i> වේගවලින් එස් වෙළින් <i>u</i> හා <i>v</i> වේගවලි: පන්වන්න.) <u>Q</u>	වූ Q අංශුවක් සුමට තිරස් ඛිනෙක දෙසට චලනය වේ ත් චලනය වේ. u ඇසුරෙන්	. ඒවායේ
2.	2. රූපයේ දැක්වෙන පරිදි, ස්කන්ධය <i>m</i> වූ <i>P</i> අංශ මත එක ම සරල රේඛාවක් දිගේ පිළිවෙළින් . ගැටුමෙන් පසු ව, <i>P</i> හා <i>Q</i> එකිනෙකින් ඉවතට පිළිගි <i>P</i> හා <i>Q</i> අතර පුතාහාගති සංගුණකය $\frac{1}{3}$ බව හේ	ඉවක් හා ස්කන්ධය 3 <i>m</i> 5 <i>u</i> හා <i>u</i> වේගවලින් එස් වෙළින් <i>u</i> හා <i>v</i> වේගවලි: පන්වන්න.) <u>Q</u>	වූ Q අංශුවක් සුමට තිරස් ඛිනෙක දෙසට චලනය වේ ත් චලනය වේ. u ඇසුරෙන්	. ඒවායේ
2.	2. රූපයේ දැක්වෙන පරිදි, ස්කන්ධය <i>m</i> වූ <i>P</i> අංශ මත එක ම සරල රේඛාවක් දිගේ පිළිවෙළින් . ගැටුමෙන් පසු ව, <i>P</i> හා <i>Q</i> එකිනෙකින් ඉවතට පිළිගි <i>P</i> හා <i>Q</i> අතර පුතාහාගති සංගුණකය $\frac{1}{3}$ බව හේ	ඉවක් හා ස්කන්ධය 3 <i>m</i> 5 <i>u</i> හා <i>u</i> වේගවලින් එස් වෙළින් <i>u</i> හා <i>v</i> වේගවලි: පන්වන්න.) <u>Q</u>	වූ Q අංශුවක් සුමට තිරස් ඛිනෙක දෙසට චලනය වේ ත් චලනය වේ. u ඇසුරෙන්	. ඒවායේ
2.	2. රූපයේ දැක්වෙන පරිදි, ස්කන්ධය <i>m</i> වූ <i>P</i> අංශ මත එක ම සරල රේඛාවක් දිගේ පිළිවෙළින් . ගැටුමෙන් පසු ව, <i>P</i> හා <i>Q</i> එකිනෙකින් ඉවතට පිළිගි <i>P</i> හා <i>Q</i> අතර පුතාහාගති සංගුණකය $\frac{1}{3}$ බව හේ	ඉවක් හා ස්කන්ධය 3 <i>m</i> 5 <i>u</i> හා <i>u</i> වේගවලින් එස් වෙළින් <i>u</i> හා <i>v</i> වේගවලි: පන්වන්න.) <u>Q</u>	වූ Q අංශුවක් සුමට තිරස් ඛිනෙක දෙසට චලනය වේ ත් චලනය වේ. u ඇසුරෙන්	. ඒවායේ

3.	P අංශුවක්, අචල පඩි පෙළක පඩියක දාරයෙහි වූ A ලක්ෂායක සිට එම
	දාරයට ලම්බව $u=rac{3}{2}\sqrt{ga}$ මගින් දෙනු ලබන u පුවේගයකින් තිරස් ව
	පුක්ෂේප කරනු ලැබ, ග්රුත්වය යටතේ චලනය වේ. එක් එක් පඩියේ උස
	a හා දිග $2a$ වේ (රූපය බලන්න). P අංශුව A ට පහළින් පළමු පඩියේ
	හොවදින බවත් A ට පහළින් දෙවන පඩියේ A සිට $3a$ තිරස් දුරකින් වදින $2a$ බවත් පෙන්වන්න.
4.	R N නියත විශාලත්වයකින් යුත් පුතිරෝධයකට එරෙහිව සෘජු සමතලා පාරක් දිගේ ස්කන්ධය M kg වූ කාරයක් චලනය වේ. කාරය ν m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ.
4.	කාරයක් චලනය වේ. කාරය v m s $^{-1}$ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s $^{-2}$ වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)v$ W බව පෙන්වන්න.
4.	කාරයක් චලනය වේ. කාරය ν m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)\nu$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියත විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කිුිිිියා කරමින් ති්රසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට ν_1 m s ⁻¹ නියත වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය ν m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)\nu$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියන විශාලන්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කිුයා
4.	කාරයක් චලනය වේ. කාරය ν m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)\nu$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියත විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කිුිිිියා කරමින් ති්රසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට ν_1 m s ⁻¹ නියත වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය ν m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)\nu$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියත විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කිුිිිියා කරමින් ති්රසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට ν_1 m s ⁻¹ නියත වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය ν m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)\nu$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියත විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කිුිිිියා කරමින් ති්රසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට ν_1 m s ⁻¹ නියත වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය ν m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)\nu$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියත විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කිුිිිියා කරමින් ති්රසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට ν_1 m s ⁻¹ නියත වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය ν m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)\nu$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියත විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කිුිිිියා කරමින් ති්රසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට ν_1 m s ⁻¹ නියත වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය ν m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)\nu$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියත විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කිුිිිියා කරමින් ති්රසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට ν_1 m s ⁻¹ නියත වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය ν m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)\nu$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියත විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කිුිිිියා කරමින් ති්රසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට ν_1 m s ⁻¹ නියත වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය ν m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)\nu$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියත විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කිුිිිියා කරමින් ති්රසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට ν_1 m s ⁻¹ නියත වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය ν m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)\nu$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියත විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කිුිිිියා කරමින් ති්රසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට ν_1 m s ⁻¹ නියත වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය ν m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)\nu$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියත විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කිුිිිියා කරමින් ති්රසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට ν_1 m s ⁻¹ නියත වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය ν m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)\nu$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියත විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කිුිිිියා කරමින් ති්රසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට ν_1 m s ⁻¹ නියත වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය ν m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)\nu$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියත විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කිුිිිියා කරමින් ති්රසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට ν_1 m s ⁻¹ නියත වේගයක් සහිත ව චලනය වේ.
4.	කාරයක් චලනය වේ. කාරය ν m s ⁻¹ වේගයෙන් චලනය වන මොහොතක දී එහි ත්වරණය a m s ⁻² වේ. මෙම මොහොතේ දී එහි එන්ජිමේ ජවය $(R+Ma)\nu$ W බව පෙන්වන්න. කාරය ඊළඟට එම R N නියත විශාලත්වයෙන් ම යුත් පුතිරෝධයකට එරෙහිව එම ජවයෙන් ම කිුිිිියා කරමින් ති්රසට α කෝණයකින් ආනත වූ ඍජු පාරක ඉහළට ν_1 m s ⁻¹ නියත වේගයක් සහිත ව චලනය වේ.

5.	සුපුරුදු අංකනයෙන්, $\mathbf{a}=3\mathbf{i}+4\mathbf{j},\ \mathbf{b}=4\mathbf{i}+3\mathbf{j}$ හා $\mathbf{c}=\alpha\mathbf{i}+(1-\alpha)\mathbf{j}$ යැයි ගනිමු; මෙහි $\alpha\in\mathbb{R}$ වේ. (i) $ \mathbf{a} $ හා $ \mathbf{b} $,
	(ii) α ඇසුරෙන් a·c හා b·c
	ලසායන්න.
	${f a}$ හා ${f c}$ අතර කෝණය ${f b}$ හා ${f c}$ අතර කෝණයට සමාන නම්, $lpha=rac{1}{2}$ බව පෙන්වන්න.
6.	දිග $2l$ වූ සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක්, සිරස් තලයක සව් කර ඇති අරය $a\left(>\sqrt{2}l\right)$ වූ සිහින්,
	සුමට දෘඪ වෘත්තාකාර කම්බියක උච්චතම ලක්ෂායට ඈඳා ඇත. කම්බිය දිගේ චලනය වීමට නිද්හස ඇති බර w වූ කුඩා සුමට පබළුවක් තන්තුවේ අනෙක් කෙළවරට ඈඳා ඇත. රූපයේ දැක්වෙන පරිදි, තන්තුව
	තදව, පබළුව සමතුලිතතාවයේ පවතී. පබළුව මත කිුිිිිිිිිිි කරන බල ලකුණු කර, තන්තුවේ ආතතිය $\frac{2wl}{a}$
	බව පෙන්වන්න.
	32
	\

7.	A හා B යනු Ω නියැදි අවකාශයක සිද්ධි දෙකක් යැයි ගනිමු. සුපුරුදු අංකනයෙන්, $P(A)=p,\ P(B)=rac{p}{2}$
	හා $P(A \cup B) - P(A \cap B) = \frac{2p}{3}$ වේ; මෙහි $p > 0$ වේ. p ඇසුරෙන් $P(A \cap B)$ සොයන්න.
	A හා B ස්වායන්න සිද්ධි නම්, $p=rac{5}{6}$ බව අපෝහනය කරන්න.
8.	මල්ලක, පාටින් හැර අන් සෑම අයුරකින් ම සමාන වූ, සුදු බෝල 6 ක් හා කළු බෝල n අඩංගු වේ. එකකට
U.	
	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
	පසු ව අනෙක ලෙස පුතිස්ථාපනයෙන් තොරව බෝල දෙකක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.

9.	11 ව අඩු පුතින	ත්න නිබ <u>ිල</u> තුනක	මධාන නාය	ය 7 වේ. 2	තවත් නිඛ	ල දෙකක්	ගත වට	නිබිල පහේම) මධාපප
		මම නිබිල පහේ							
								,,,,,,,,,,,,,,,,	

						• • • • • • • • • • • • • • • • • • • •			
			• • • • • • • • • • • • • • • • • • • •				••••••		
							• • • • • • • • • • • • • • • • • • • •		, ,
			• • • • • • • • • • • • • • • • • • • •	••••••					
J.	පුවරුවක් වෙතර	ට ඊතලයක් විදිනු ලස අංක කළ සර	ලැබේ. ඒ	ික් එක් බ)ණ්ඩයෙහි				
U.	පුවරුවක් වෙතර	ට ඊතලයක් විදිනු න් දෙනු ලැබේ;) ලැබේ. ඒ මෙහි <i>p</i> හා	වක් එක් බ q නියත)ණ්ඩයෙහි වේ.	ඊකලය 8	වදින වාර		
υ.	පුවරුවක් වෙතර	ට ඊතලයක් විදිනු ත් දෙනු ලැබේ; අංකය	ලැබේ. ඒ මෙහි <i>p</i> හා 1	එක් එක් බ <i>q</i> නියත (2)ණ්ඩයෙහි වේ. 3	ථිකලය දි 4	වදින වාර 5		
υ.	පුවරුවක් වෙතර සංඛනාත වගුවෙ	ට ඊතලයක් විදිනු ත් දෙනු ලැබේ; අංකය සංබාහතය	ලැබේ. ඒ මෙහි <i>p</i> හා <u>1</u>	වක් එක් බ <i>q</i> නියත)ණ්ඩයෙහි වේ. <u>3</u>	්තලය දි 4 5)දින වාර <u>5</u> 2	ගණන පහත	ා දැක්ණ
).	පුවරුවක් වෙතර සංඛනාත වගුවෙ	ට ඊතලයක් විදිනු ත් දෙනු ලැබේ; අංකය සංබාහතය	ලැබේ. ඒ මෙහි <i>p</i> හා <u>1</u>	වක් එක් බ <i>q</i> නියත)ණ්ඩයෙහි වේ. <u>3</u>	්තලය දි 4 5)දින වාර <u>5</u> 2	ගණන පහත	ා දැක්ණ
	පුවරුවක් වෙතර සංඛනාත වගුවෙ	ට ඊතලයක් විදිනු ත් දෙනු ලැබේ; අංකය	ලැබේ. ඒ මෙහි <i>p</i> හා <u>1</u>	වක් එක් බ <i>q</i> නියත)ණ්ඩයෙහි වේ. <u>3</u>	්තලය දි 4 5)දින වාර <u>5</u> 2	ගණන පහත	ා දැක්ණ
	පුවරුවක් වෙතර සංඛනාත වගුවෙ	ට ඊතලයක් විදිනු ත් දෙනු ලැබේ; අංකය සංබාහතය	ලැබේ. ඒ මෙහි <i>p</i> හා <u>1</u>	වක් එක් බ <i>q</i> නියත)ණ්ඩයෙහි වේ. <u>3</u>	්තලය දි 4 5)දින වාර <u>5</u> 2	ගණන පහත	ා දැක්ණ
	පුවරුවක් වෙතර සංඛනාත වගුවෙ	ට ඊතලයක් විදිනු ත් දෙනු ලැබේ; අංකය සංබාහතය	ලැබේ. ඒ මෙහි <i>p</i> හා <u>1</u>	වක් එක් බ <i>q</i> නියත)ණ්ඩයෙහි වේ. <u>3</u>	්තලය දි 4 5)දින වාර <u>5</u> 2	ගණන පහත	ා දැක්ණ
	පුවරුවක් වෙතර සංඛනාත වගුවෙ	ට ඊතලයක් විදිනු ත් දෙනු ලැබේ; අංකය සංබාහතය	ලැබේ. ඒ මෙහි <i>p</i> හා <u>1</u>	වක් එක් බ <i>q</i> නියත)ණ්ඩයෙහි වේ. <u>3</u>	්තලය දි 4 5)දින වාර <u>5</u> 2	ගණන පහත	ා දැක්ණ
	පුවරුවක් වෙතර සංඛනාත වගුවෙ	ට ඊතලයක් විදිනු ත් දෙනු ලැබේ; අංකය සංබාහතය	ලැබේ. ඒ මෙහි <i>p</i> හා <u>1</u>	වක් එක් බ <i>q</i> නියත)ණ්ඩයෙහි වේ. <u>3</u>	්තලය දි 4 5)දින වාර <u>5</u> 2	ගණන පහත	ා දැක්ම
	පුවරුවක් වෙතර සංඛනාත වගුවෙ	ට ඊතලයක් විදිනු ත් දෙනු ලැබේ; අංකය සංබාහතය	ලැබේ. ඒ මෙහි <i>p</i> හා <u>1</u>	වක් එක් බ <i>q</i> නියත)ණ්ඩයෙහි වේ. <u>3</u>	්තලය දි 4 5)දින වාර <u>5</u> 2	ගණන පහත	ා දැක්ණ
	පුවරුවක් වෙතර සංඛනාත වගුවෙ	ට ඊතලයක් විදිනු ත් දෙනු ලැබේ; අංකය සංබාහතය	ලැබේ. ඒ මෙහි <i>p</i> හා <u>1</u>	වක් එක් බ <i>q</i> නියත)ණ්ඩයෙහි වේ. <u>3</u>	්තලය දි 4 5)දින වාර <u>5</u> 2	ගණන පහත	ා දැක්ණ
	පුවරුවක් වෙතර සංඛනාත වගුවෙ	ට ඊතලයක් විදිනු ත් දෙනු ලැබේ; අංකය සංබාහතය	ලැබේ. ඒ මෙහි <i>p</i> හා <u>1</u>	වක් එක් බ <i>q</i> නියත)ණ්ඩයෙහි වේ. <u>3</u>	්තලය දි 4 5)දින වාර <u>5</u> 2	ගණන පහත	ා දැක්ණ
	පුවරුවක් වෙතර සංඛනාත වගුවෙ	ට ඊතලයක් විදිනු ත් දෙනු ලැබේ; අංකය සංබාහතය	ලැබේ. ඒ මෙහි <i>p</i> හා <u>1</u>	වක් එක් බ <i>q</i> නියත)ණ්ඩයෙහි වේ. <u>3</u>	්තලය දි 4 5)දින වාර <u>5</u> 2	ගණන පහත	ා දැක්ණ
y	පුවරුවක් වෙතර සංඛනාත වගුවෙ	ට ඊතලයක් විදිනු ත් දෙනු ලැබේ; අංකය සංබාහතය	ලැබේ. ඒ මෙහි <i>p</i> හා <u>1</u>	වක් එක් බ <i>q</i> නියත ර 2 . <i>p</i>)ණ්ඩයෙහි වේ. <u>3</u>	්තලය දි 4 5)දින වාර <u>5</u> 2	ගණන පහත	ා දැක්ණ
y.	පුවරුවක් වෙතර සංඛනාත වගුවෙ	ට ඊතලයක් විදිනු ත් දෙනු ලැබේ; අංකය සංබාහතය	ලැබේ. ඒ මෙහි <i>p</i> හා <u>1</u>	වක් එක් බ <i>q</i> නියත ර 2 . <i>p</i>)ණ්ඩයෙහි වේ. <u>3</u>	්තලය දි 4 5)දින වාර <u>5</u> 2	ගණන පහත	ා දැක්ණ
9.	පුවරුවක් වෙතර සංඛනාත වගුවෙ	ට ඊතලයක් විදිනු ත් දෙනු ලැබේ; අංකය සංබාහතය	ලැබේ. ඒ මෙහි <i>p</i> හා <u>1</u>	වක් එක් බ <i>q</i> නියත ර 2 . <i>p</i>)ණ්ඩයෙහි වේ. <u>3</u>	්තලය දි 4 5)දින වාර <u>5</u> 2	ගණන පහත	ා දැක්ණ
0.	පුවරුවක් වෙතර සංඛනාත වගුවෙ	ට ඊතලයක් විදිනු ත් දෙනු ලැබේ; අංකය සංබාහතය	ලැබේ. ඒ මෙහි <i>p</i> හා <u>1</u>	වක් එක් බ <i>q</i> නියත ර 2 . <i>p</i>)ණ්ඩයෙහි වේ. <u>3</u>	්තලය දි 4 5)දින වාර <u>5</u> 2	ගණන පහත	ා දැක්ණ
9.	පුවරුවක් වෙතර සංඛනාත වගුවෙ	ට ඊතලයක් විදිනු ත් දෙනු ලැබේ; අංකය සංබාහතය	ලැබේ. ඒ මෙහි <i>p</i> හා <u>1</u>	වක් එක් බ <i>q</i> නියත ර 2 . <i>p</i>)ණ්ඩයෙහි වේ. <u>3</u>	්තලය දි 4 5)දින වාර <u>5</u> 2	ගණන පහත	ා දැක්ණ
J.	පුවරුවක් වෙතර සංඛනාත වගුවෙ	ට ඊතලයක් විදිනු ත් දෙනු ලැබේ; අංකය සංබාහතය	ලැබේ. ඒ මෙහි <i>p</i> හා <u>1</u>	වක් එක් බ <i>q</i> නියත ර 2 . <i>p</i>)ණ්ඩයෙහි වේ. <u>3</u>	්තලය දි 4 5)දින වාර <u>5</u> 2	ගණන පහත	ා දැක්ණ

13

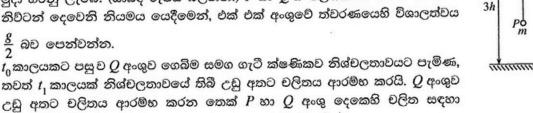
ପିସବ୍ର ଡ ଡିଡିଇଡି ଫ୍ଟିପିଡି । (முழுப் பதிப்புநிமையுடையது |All Rights Reserved]

ල් ලංකා විතාන දෙදාර්තමේන්තුව ල් ලංකා විතාශ දෙදාර්ත**ි්තුවල් නිස්තිර්ග**න් **ලෙපාම්වා ලිම්මේන්තුව**තාශ දෙදාර්තමේන්තුව ල් ලංකා විතාශ දෙදාර්තමේන්තුව இහங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் ப**ட்**ணைத் திணைக்கவும் இருந்தைப் பரிடன்சத் திணைக்களம் இலங்கைப் பரிடதைத் திணைக்களம் Department of Examinations, Sri Larka Department of **இலங்கினை நி. Sri Likka Department** of Examinations, Sri Larka Cepartment of Examinations, Sri L

අධායයන පොදු සහකික පතු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்னிப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்நி General Certificate of Education (Adv. Level) Examination, August 2016

සංයුක්ත ගණිතය இணைந்த கணிதம்

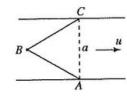
II Combined Mathematics


1111111111

B කොටස

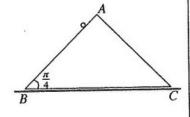
* පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

(මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.)

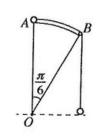

 $\mathbf{1}\hat{\mathbf{1}}.(a)$ අපුතාහස්ථ ති්රස් ගෙබීමකට 3h උසක් ඉහළින් සව් කර ඇති කුඩා සුමට කප්පියක් මතින් යන සැහැල්ලු අවිතනෳ තන්තුවක් මගින්, ස්කන්ධය m වූ Pඅංශුවක් ස්කන්ධය 3m වූ Q අංශුවකට සම්බන්ධ කර ඇත. ආරම්භයේ දී අංශු දෙක ගෙබිමට h උසකින් තන්තුව තදව ඇතිව අල්වා තබා නිශ්චලතාවයේ සිට මුදා හරිනු ලැබේ. (යාබද රූපය බලන්න.) P හා Q හි චලිතයන්ට වෙන වෙන ම නිව්ටන් දෙවෙනි නියමය යෙදීමෙන්, එක් එක් අංශුවේ ත්වරණයෙහි විශාලත්වය $\frac{8}{2}$ බව පෙන්වන්න.

පුවේග-කාල පුස්තාරවල දළ සටහන් වෙන වෙන ම අඳින්න. මෙම පුස්තාර භාවිතයෙන්, $t_0=2\sqrt{\frac{h}{g}}$ බව පෙන්වා, g හා h ඇසුරෙන් t_1 සොයන්න.

P අංශුව ගෙබිමේ සිට $rac{5h}{2}$ උපරිම උසකට ළඟා වන බව තවදුරටත් පෙන්වන්න.


(b) පළල a වූ සෘජු ගඟක් ඒකාකාර u චේගයකින් ගලයි. ගඟ ගලන දිශාවට ACරේඛාව ලම්බ වන පරිදි A හා C ලක්ෂා ගඟේ පුතිවිරුද්ධ ඉවුරු දෙකෙහි පිහිටා ඇත. තව ද ABC සමපාද තිුකෝණයක් වන පරිදි AC ගෙන් උඩු ගං අතට B අවල බෝයාවක් ගඟ මැද සවි කර ඇත. (යාබද රූපය බලන්න.) ජලයට සාපේක්ෂව $v\left(>u
ight)$ වේගයෙන් චලනය වන බෝට්ටුවක් A සිට ආරම්භ කර B වෙන ළඟා වන තෙක් චලනය වේ. ඊළඟට එය B සිට C දක්වා චලනය වේ. A සිට B දක්වාත් Bසිට C දක්වාත් බෝට්ටුවේ චලිත සඳහා පුවේග තිුකෝණවල දළ සටහන් අඳින්න.

A සිට B දක්වා චලිතයේ දී බෝට්ටුවේ වේගය $rac{1}{2}\left(\sqrt{4v^2-u^2}-\sqrt{3}u
ight)$ බව පෙන්වා, B සිට C දක්වා චලිතයේ දී එහි වේගය සොයන්න.


ඒ නයින්, AB හා BC පෙත් සඳහා බෝට්ටුව ගන්නා මුළු කාලය $\frac{a\sqrt{4v^2-u^2}}{v^2-u^2}$ බව පෙන්වන්න.

 ${f 12}.(a)$ රූපයේ දැක්වෙන ABC තිුකෝණය, ස්කන්ධය ${f 2}m$ වූ ඒකාකාර කුඤ්ඤයක ගුරුත්ව කේන්දුය හරහා වූ සිරස් හරස්කඩකි. AB රේඛාව එය අයත් මුහුණතෙහි උපරිම බෑවුම් රේඛාවක් වන අතර $\hat{ABC} = \frac{\pi}{4}$ වේ. BC අයත් මුහුණත රළු තිරස් ගෙබිමක් මත ඇතිව කුඤ්ඤය තබා ඇත. AB අයත් මුහුණත සුමට චේ. ස්කන්ධය m වූ අංශුවක් රූපයේ දැක්වෙන පරිදි ABමත අල්වා තබා පද්ධතිය නිශ්චලතාවයේ සිට මුදා හරිනු ලැබේ. කුඤ්ඤය

 \overrightarrow{BC} හි දිශාවට චලනය වන බවත් ගෙබිම මගින් කුඤ්ඤය මන ඇති කරන ඝර්ෂණ බලයෙහි විශාලත්වය $rac{R}{6}$ වන බවත් දී ඇත; මෙහි R යනු ගෙබිම මගින් කුඤ්ඤය මත ඇති කරන අභිලම්භ පුතිකිුයාවේ විශාලත්වයයි. m හා g ඇසුරෙන්, R නිර්ණය කිරීමට පුමාණවත් වන සමීකරණ ලබා ගන්න.

(b) රූපයේ දැක්වෙන OAB යනු OA සිරස් ව ඇති, O කේන්දුයෙහි $\frac{\pi}{6}$ කෝණයක් ආපාතනය කරන අරය a වූ වෘත්ත බණ්ඩයකි. එය, ස්වකීය අක්ෂය තිරස් ව සවි කර ඇති සුමට සිලින්ඩරාකාර බණ්ඩයක අක්ෂයට ලම්බ හරස්කඩකි. B හි සවි කර ඇති කුඩා සුමට කප්පියක් මතින් යන සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක් ස්කන්ධය 3m වූ P අංශුවකට ඇඳා ඇති අතර එහි අනෙක් කෙළවර ස්කන්ධය m වූ Q අංශුවකට ඇඳා ඇත. ආරම්භයේ දී P අංශුව A හි අල්වා ඇති අතර Q අංශුව O හි තිරස් මට්ටමේ නිදහසේ එල්ලෙයි. තන්තුව තදව ඇතිව, මෙම පිහිටීමෙන්, පද්ධතිය නිශ්චලතාවයේ සිට මුදා හරිනු ලැබේ.

OP උඩු අන් සිරස සමග $\theta\left(0<\theta<\frac{\pi}{6}
ight)$ කෝණයක් සාදන විට $2a\dot{\theta}^2=3g(1-\cos\theta)+g\theta$ බව හා තන්තුවේ ආතතිය $\frac{3}{4}mg\left(1-\sin\theta\right)$ බව පෙන්වා, P අංශුව මත අභිලම්බ පුතිකිුිිියාව සොයන්න.

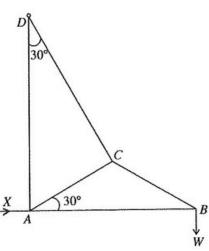
13. ස්වාභාවික දිග a හා පුතාහස්ථතා මාපාංකය 4mg වූ සැහැල්ලු පුතහස්ථ තන්තුවක එක් කෙළවරක් අවල O ලක්ෂායකට ද අනෙක් කෙළවර ස්කන්ධය m වූ P අංශුවකට ද ගැට ගසා ඇත. P අංශුව, O හි නිශ්චලතාවයේ සිට මුදා හරිනු ලැබේ. P අංශුව A ලක්ෂාය පසු කර යන විට එහි පුවේගය සොයන්න; මෙහි OA = a වේ.

තන්තුවේ දිග $x(\geq a)$ යන්න $\ddot{x}+\frac{4g}{a}\left(x-\frac{5a}{4}\right)=0$ සමීකරණය සපුරාලන බව පෙන්වන්න.

 $X=x-rac{5a}{4}$ ලෙස ගෙන, ඉහන සමීකරණය $\ddot{X}+\omega^2X=0$ ආකාරයෙන් පුකාශ කරන්න; මෙහි $\omega(>0)$ නිර්ණය කළ යුතු නියතයකි.

 $\dot{X}^2 = \omega^2 \left(c^2 - X^2\right)$ බව උපකල්පනය කරමින්, මෙම සරල අනුවර්තී චලිතයෙහි විස්තාරය වන c සොයන්න. P අංශුව ළඟා වන පහළ ම ලක්ෂාය L යැයි ගනිමු. A සිට L දක්වා චලනය වීමට P මගින් ගනු ලැබූ කාලය $\frac{1}{2}\sqrt{\frac{a}{g}}\left\{\pi - \cos^{-1}\left(\frac{1}{3}\right)\right\}$ බව පෙන්වන්න.

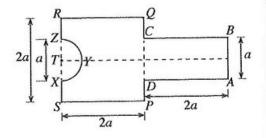
P අංශුව L හි තිබෙන මොහොතේ දී ස්කන්ධය $\lambda m~(1 \le \lambda < 3)$ වූ තවත් අංශුවක් සීරුවෙන් P ට ඇඳනු ලැබේ. ස්කන්ධය $(1 + \lambda)~m$ වූ සංයුක්ත අංශුවේ චලිත සමීකරණය $\ddot{x} + \frac{4g}{(1 + \lambda)a}\left\{x - (5 + \lambda)\frac{a}{4}\right\} = 0$ බව පෙන්වන්න.

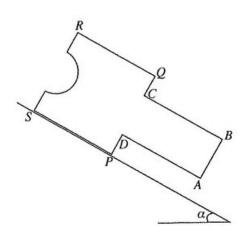

සංයුක්ත අංශුව, $(3-\lambda)rac{a}{4}$ විස්තාරය සහිත පූර්ණ සරල අනුවර්තී චලිතයේ යෙදෙන බව තවදුරටත් පෙන්වන්න.

- 14.(a) O මූලයක් අනුබද්ධයෙන් A හා B ලක්ෂා දෙකක පිහිටුම් දෛශික පිළිවෙළින් \mathbf{a} හා \mathbf{b} වේ; මෙහි O,A හා B ඒක රේඛ්ය හෝ වේ. C යනු $\overrightarrow{OC} = \frac{1}{3} \overrightarrow{OB}$ වන පරිදි පිහිටි ලක්ෂාය ද D යනු $\overrightarrow{OD} = \frac{1}{2} \overrightarrow{AB}$ වන පරිදි පිහිටි ලක්ෂාය ද යැයි ගනිමු. \mathbf{a} හා \mathbf{b} අසුරෙන් \overrightarrow{AC} හා \overrightarrow{AD} පුකාශ කර, $\overrightarrow{AD} = \frac{3}{2} \overrightarrow{AC}$ බව පෙන්වන්න. P හා Q යනු පිළිවෙළින්, AB හා OD මත $\overrightarrow{AP} = \lambda \overrightarrow{AB}$ හා $\overrightarrow{OQ} = (1-\lambda) \overrightarrow{OD}$ වන පරිදි පිහිටි ලක්ෂා යැයි ගනිමු; මෙහි $0 < \lambda < 1$ වේ. $\overrightarrow{PC} = 2 \overrightarrow{CQ}$ බව පෙන්වන්න.
 - (b) ABCD සමාන්තරාසුයක AB=2 m හා AD=1 m යැයි ද $B\hat{A}D=\frac{\pi}{3}$ යැයි ද ගනිමු. තව ද CD හි මධා ලක්ෂාය E යැයි ගනිමු. විශාලන්ව නිව්ටන 5,5,2,4 හා 3 වූ බල පිළිවෙළින් AB,BC,DC,DA හා BE දිගේ අක්ෂර අනුපිළිවෙළින් දැක්වෙන දිශාවන්ට කිුිියා කරයි. ඒවායේ සම්පුයුක්ත බලය \overrightarrow{AE} ට සමාන්තර බව පෙන්වා එහි විශාලන්වය සොයන්න.

සම්පුයුක්ත බලයේ කිුිිිියා රේඛාව B සිට $\frac{3}{2}$ m දුරක දී දික්කරන ලද AB ට හමුවන බවත් පෙන්වන්න. දැන් C හරහා කිුිිියා කරන අමතර බලයක් ඉහත බල පද්ධතියට එකතු කරනු ලබන්නේ නව පද්ධතියේ සම්පුයුක්ත බලය \overrightarrow{AE} දිගේ වන පරිදි ය. අමතර බලයේ විශාලත්වය හා දිශාව සොයන්න.

()


- 15. (a) එක එකක බර w_1 වූ සමාන ඒකාකාර දඬු හතරක්, ABCD රොම්බසයක් සෑදෙන පරිදි, ඒවායේ අන්තවල දී සුමට ලෙස සන්ධි කර ඇත. $B\hat{A}D=2\theta$ වන පරිදි BC හා CD හි මධා ලක්ෂා සැහැල්ලු දණ්ඩක් මගින් යා කර ඇත. B හා D එක් එක් සන්ධිය සමාන w_2 හාර දරයි. පද්ධතිය, A සන්ධියෙන් සමමිතික ලෙස එල්ලෙමින්, සැහැල්ලු දණ්ඩ තිරස් ව ඇතිව සිරස් තලයක සමතුලිකතාවයේ පවතියි. සැහැල්ලු දණ්ඩෙහි තෙරපුම $2(2w_1+w_2)\tan\theta$ බව පෙන්වන්න.
 - (b) යාබද රූපයෙන්, අන්තවල දී සුමට ලෙස සන්ධි කළ AB, BC, CD, AC හා AD සැහැල්ලු දඬු පහකින් සමන්විත රාමු සැකිල්ලක් නිරූපණය වේ. AC = CB හා BÂC = 30° = ADC බව දී ඇත. රාමු සැකිල්ල D හි දී සුමට ලෙස අසව් කර ඇත. B සන්ධියේ දී W බරක් එල්ලා AB හිරස් ව ද AD සිරස් ව ද ඇතිව රාමු සැකිල්ල සිරස් තලයක සමතුලිතව තබා ඇත්තේ A හි දී කියා කරන විශාලත්වය X වූ තිරස් බලයක් මගිනි. බෝ අංකනය භාවිතයෙන් B, C හා A සන්ධි සඳහා පුතාහබල සටහන් එක ම රූපයක අඳින්න. ජනයින්, X හි අගය හා සියලු දඬුවල පුතාහබල, ආතති හා තෙරපුම් වශයෙන් වෙන් කර දක්වමින් සොයන්න.



16. අරය r හා O කේන්දුය වූ ඒකාකාර අර්ධ වෘත්තාකාර ආස්තරයක ස්කන්ධ කේන්දුය O සිට $\frac{4r}{3\pi}$ දුරකින් ඇති බව පෙන්වන්න.

යාබද රූපයේ දැක්වෙන පරිදි, L ඒකාකාර තල ආස්තරයක් සාදා ඇත්තේ ABCD සෘජුකෝණාසුයක් PQRS සම්වතුරසුයකට DC හා PQ ඒවායේ මධා ලක්ෂා සම්පාත වෙමින් එක ම රේඛාවේ පිහිටන පරිදි දෘඪ ලෙස සවි කර, RS හි මධා ලක්ෂාය වන T හි කේන්දුය ඇති අරය $\frac{a}{2}$ වන XYZ අර්ධ වෘත්තාකාර පෙදෙසක් ඉවත් කිරීමෙනි. AB=a හා AD=PQ=2a බව දී ඇත. L ආස්තරයෙහි ස්කන්ධ කේන්දුය සම්මිතික අක්ෂය මත, RS සිට ka දුරකින් පිහිටන බව පෙන්වන්න; මෙහි $k=\frac{238}{3(48-\pi)}$ වේ.

යාබද රූපයේ දැක්වෙන පරිදි, L ආස්තරය තිරසට α කෝණයකින් ආනත වූ රළු තලයක් මත ස්වකීය තලය සිරස් ව ද P ලක්ෂාය S ට පහළින් පිහිටන පරිදි PS දාරය උපරිම බෑවුම් රේඛාවක් මත ද ඇතිව සමතුලිතව පිහිටයි. $\tan \alpha < (2-k)$ හා $\mu \ge \tan \alpha$ බව පෙන්වන්න; මෙහි μ යනු ආස්තරය හා ආනත තලය අතර සර්ෂණ සංගුණකයයි.

17.(a) නොනැඹුරු ඝනකාකාර A දාදු කැටයක් එහි වෙන් වෙන් මුහුණත් හය මත 1,2,3,3,4,5 පෙන්වයි. A දාදු කැටය දෙවරක් උඩ දමනු ලැබේ. ලැබුණු සංඛාහ දෙකෙහි ඓකාස 6 වීමේ සම්භාවිතාව සොයන්න. මුහුණත් මත වූ සංඛාහ හැරුණු විට, අන් සෑම අයුරකින් ම A ට සර්වසම තවත් B දාදු කැටයක් එහි වෙන් වෙන් මුහුණත් හය මත 2,2,3,4,4,5 පෙන්වයි. B දාදු කැටය දෙවරක් උඩ දමනු ලැබේ. ලැබුණු සංඛාහ දෙකෙහි ඓකාස 6 වීමේ සම්භාවිතාව සොයන්න.

දැන්, A හා B දාදු කැට දෙක පෙට්ටියකට දමනු ලැබේ. එක් දාදු කැටයක් සසම්භාවී ලෙස පෙට්ටියෙන් ඉවතට ගෙන දෙවරක් උඩ දමනු ලැබේ. ලැබුණු සංඛතා දෙකෙහි ඓකාය 6 බව දී ඇති විට, පෙට්ටියෙන් ඉවතට ගත් දාදු කැටය, A දාදු කැටය වීමේ සම්භාවිතාව සොයන්න.

(b) x_1, x_2, \ldots, x_n යන සංඛාහ n වල මධානයය හා සම්මත අපගමනය පිළිවෙළින් μ_1 හා σ_1 ද, y_1, y_2, \ldots, y_m යන සංඛාහ m වල මධානයය හා සම්මත අපගමනය පිළිවෙළින් μ_2 හා σ_2 ද වේ. මෙම සියලු ම n+m සංඛාນවල මධානයය හා සම්මත අපගමනය පිළිවෙළින් μ_3 හා σ_3 යැයි ගනිමු.

$$\mu_3 = \frac{n\mu_1 + m\mu_2}{n+m}$$
 බව පෙන්වන්න.

$$d_1 = \mu_3 - \mu_1$$
 ලෙස ගනිමු. $\sum_{i=1}^n \left(x_i - \mu_3\right)^2 = n\left(\sigma_1^2 + d_1^2\right)$ බව පෙන්වන්න.

 $d_2=\mu_3-\mu_2$ ලෙස ගැනීමෙන්, $\sum_{j=1}^m \left(y_j-\mu_3\right)^2$ සඳහා එබඳු පුකාශනයක් ලියා දක්වන්න.

$$\sigma_3^2 = \frac{\left(n\sigma_1^2 + m\sigma_2^2\right) + \left(nd_1^2 + md_2^2\right)}{n+m}$$
 බව අපෝහනය කරන්න.

අලුත් පොතක් පුකාශයට පත් කිරීමෙන් පසු පළමු දින 100 ඇතුළත දිනකට විකිණී තිබුණු පිටපත් සංඛෂාවේ මධානාපය 2.3 ක් ද විචලතාව 0.8 ක් ද විය. ඊළඟ දින 100 ඇතුළත දිනකට විකිණී තිබුණු පිටපත් සංඛෂාවේ මධානාපය 1.7 ක් ද විචලතාව 0.5 ක් ද විය. පළමු දින 200 ඇතුළත දිනකට විකිණී තිබුණු පිටපත් සංඛෂාවේ මධානාපය හා විචලතාව සොයන්න.

Visit Online Panthiya YouTube channel to watch Combined Maths and Chemistry Videos

www.onlinepanthiya.com