සියලු ම හිමිකම් ඇවිරිණි / (மුழுப் பதிப்புநிமையுடையது / All Rights Reserved]

ල් ලංකා විභාග දෙපාර්තමේන්තුව ල් ලංකා විභාග දෙපාර්ත**ිල් අවරාන ලේ පිරිවාහා දෙපාල් ජාතිමේන්තුව ලි ලංකා** විභාග දෙපාර්තමේන්තුව ඉහාසනසට ප්රධානවල් නිකාශස්සයාව ඉහාසනසට ප්රධානවල් නිකාශස්සයාවල් ප්රධානවල් ප්රධානවල් නිකාශස්සයාව මුණාසනසට ප්රධානවල් නිකාශස්සයාව ප්රධානවල් ප්රධානවේ ප්රධාන ප්රධානවේ ප්රධානවේ ප්රධානවේ ප්රධානවේ ප්රධානවේ ප්රධාන ප්රධ

> අධායන පොදු සහනික පසු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விட் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்று General Certificate of Education (Adv. Level) Examination, August 2018

හෞතික විදනව II ධෙයාණිසඛ්යාහ් II Physics II

01 S II

2018.08.13 / 0830 - 1140

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

වැදගත් :

- * මෙම පුශ්න පතුය පිටු 16 කින් යුක්ත වේ.
- * මෙම පුශ්න පතුය A සහ B යන කොටස් දෙකකින් යුක්ත වේ. කොටස් දෙකට ම නියමිත කාලය පැය පුනකි.
- * ගණක යන්තු භාවිතයට ඉඩ දෙනු **නො ලැබේ**.

A කොටස - වනුහගත රචනා (පිටු 2 - 8)

සියලු ම පුශ්නවලට පිළිතුරු මෙම පතුයේ ම සපයන්න. ඔබේ පිළිතුරු, පුශ්න පතුයේ ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නො වන බව ද සලකන්න.

B කොටස - රචනා (පිටු 9 - 16)

මෙම කොටස පුශ්න **හයකින්** සමන්විත වන අතර පුශ්න **හතරකට** පමණක් පිළිතුරු සැපයිය යුතු ය. මේ සඳහා සපයනු ලබන කඩදාසි පාවිච්චි කරන්න.

- * සම්පූර්ණ ප්‍රශ්න පත්‍රයට නියමිත කාලය අවසන් වූ පස්‍ර A සහ B කොටස් එක් පිළිතුරු පත්‍රයක් වන සේ, A කොටස B කොටසට උඩින් තිබෙන පරිදි අමුණා, විභාග ශාලාධිපතිට භාර දෙන්න.
- ※ පුශ්න පතුයේ B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

	4-mm.		
Page	(Amenin)	റാൽമൻ	mara

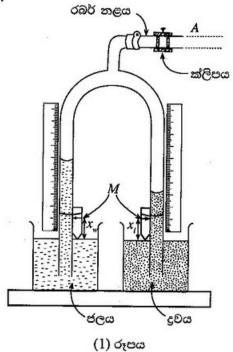
විභාග අංකය •

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි

උශ්න අංක	ලැබූ ලකුණු
1	
2	
3	
4	
5 .	
6	
7	
8	
9 (A)	
9 (B)	
10 (A)	
10 (B)	
	2 3 4 5 6 7 8 9 (A) 9 (B) 10 (A)

අවසාන ලකුණු

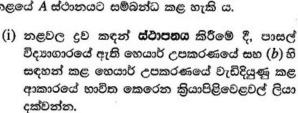
ඉලක්කමෙන්	
අකුරින්	· · · · · ·

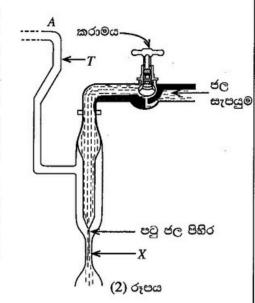

සංකේත අංක

උත්තර පනු පරීක්ෂක 1	
උත්තර පතු පරීක්ෂක 2	
ලකුණු පරීක්ෂා කළේ	
අධීක්ෂණය කළේ	

${f A}$ කොට**ය- වපුහගත රචනා** පුශ්න **හතරට ම** පිළිතුරු **මෙම පතුයේ ම** සපයන්න. (ගුරුත්වජ ත්වරණය, $g=10~{f N}~{f kg}^{-1}$)

සිරයේ කිසිවක් නො ලියන්ද

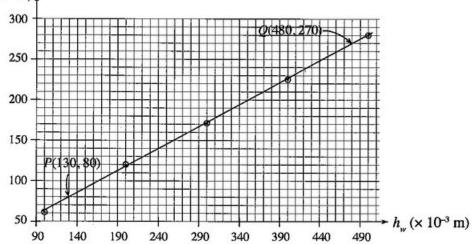

1. පාසල් විදාහගාරයක භාවිත කෙරෙන හෙයාර් උපකරණයේ පරීක්ෂණාත්මක ඇටවුමක් (1) රූපයේ පෙන්වා ඇත. පෙන්වා ඇති පරිදි x_{y} සහ x_{l} අදාළ සූචකවල M සලකුණට පිළිවෙළින්, ශීකරවල ජල සහ දුව මට්ටම්වල සිට උසවල් නිරූපණය කරයි.



(a) (i) හෙයාර් උපකරණයේ ක්ලිපයක් (clip) භාවිත කිරීමේ අරමුණ කුමක් ද?

(ii)	ජලයේ සහ දුවයේ ඝනත්ව පිළිවෙළින් d_w සහ d_l වේ. h_w සහ h_l පිළිවෙළින් අදාළ සූචකවල M සලකුණේ සිට මනින ලද වීදුරු නළ තුළ ජල කඳේ සහ දුව කඳේ උසවල් නිරූපණය කරයි නම්,
	h_l සඳහා පුකාශනයක් h_{w},d_{w},x_{w},d_l සහ x_l ඇසුරෙන් වනුත්පන්න කරන්න.
9	
(iii)	පාඨාංක කට්ටලයක් ලබාගෙන පුස්තාරයක් ඇඳීමට පරීක්ෂණය සැලසුම් කරන විට, බලාපොරොත්තු වන දුව කඳේ සහ ජල කඳේ උසවල් එකිනෙකට සැලකිය යුතු තරම් වෙනස් නම්, එක් උසකට වඩා අනෙක් උසට වැඩි අවධානයක් යොමු කළ යුතු ය. ඔබ වැඩි අවධානයක් යොමු කරන උස (වඩා අඩු උසක් ඇති එක ද නැතභොත් වඩා වැඩි උසක් ඇති එක ද) කුමක් ද? හේතු දක්වමින් ඔබේ පිළිතුර පැහැදිලි කරන්න.
(iv)	සෑම අවස්ථාවක දී ම නළ තුළ ජල සහ දුව කඳන්වල උසවල් වෙනස් කර ක්ලිපය වැසීමෙන් පසු, නව උසවල්වල පාඨාංක ලබාගැනීමට පෙර තවත් සීරුමාරුවක් කිරීමට ඔබට අවශා වේ. මෙම
	සීරුමාරුව කිරීමට ඔබ විසින් අනුගමනය කරනු ලබන පරීක්ෂණාත්මක කුමවේදය ලියන්න.

(b) (2) රූපයේ පෙන්වා ඇති උපකරණය, හෙයාර් උපකරණයේ නළ තුළ වායු පීඩනය වෙනස් කිරීමට භාවිත කළ හැකි ය. මෙම පද්ධතිය බ'නූලි මූලධර්මයට අනුව කියාකරයි. උපකරණයේ X නම් පුදේශය හරහා ගමන් කරන පටු ජල පිහිරේ වේගය කරාමය ආධාරයෙන් සීරුමාරු කිරීම මගින් T නළය තුළ වායු පීඩනය වෙනස් කළ හැකි ය. හෙයාර් උපකරණයේ වැඩිදියුණු කළ ආකාරයක් සෑදීමට, (2) රූපයේ පෙන්වා ඇති උපකරණයේ A ස්ථානය (1) රූපයේ පෙන්වා ඇති රබර් නළයේ A ස්ථානයට සම්බන්ධ කළ හැකි ය.



පාසලේ ඇති හෙයාර් උපකරණය :

හෙයාර් උපකරණයේ වැඩිදියුණු කළ ආකාරය :

(ii) සාමානාංගෙන් පාසල් විදාහගාරගේ ඇති උපකරණයට වඩා (b) හි සඳහන් කළ වැඩිදියුණු කළ ඇටවුම භාවිත කිරීමේ පුධාන **වාසියක්** දෙන්න.

(i) මෙම පරීක්ෂණයේ දී $1~{
m mm}$ නිරවදානාවකින් දිග මැනිය හැකි පරිමාණයක් ඔබට සපයා ඇත. මෙම පරීක්ෂණයේ දී ලබාගත් $h_{_W}$ මිනුම් හා බැඳුණු උපරිම **හාශික** දෝෂය කුමක් ද?

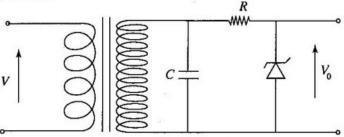
(ii) පුස්තාරය මත වූ P සහ Q ලක්ෂා දෙක භාවිත කරමින්, සල්ෆියුරික් අම්ලයේ සාපේක්ෂ ඝනත්වය ගණනය කරන්න.

	ස් නියමය සත්‍යාපනය කිරීම සඳහා භාවිත කළ හැකි පරීක්ෂණාත්මක වුමක අසම්පූර්ණ රූපසටහනක් (1) රූපයේ පෙන්වයි.	
(a)	පරීක්ෂණය නිවැරදි ව කිරීම සඳහා සරාව තුළ A,B,C,D වලින් කුමන මට්ටම දක්වා ජලය පිරවිය යුතු ද?	
(b)	ජලයට අමතරව මෙම පරීක්ෂණයේ දී ඔබට අවශා, එහෙත් අසම්පූර්ණ රූපසටහනේ දක්නට නොමැති වැදගත් අයිතමය (නිසි පුමාණයට) (1) රූපයේ අඳින්න.	
(c)	මෙම පරීක්ෂණයේ දී ජල කෙන්දකට වඩා රසදිය කෙන්දක් භාවිත කිරීමෙන් ලැබෙන වාසි දෙකක් දෙන්න.	
	(i)	
	(ii)	
	උෂ්ණත්වය වැඩි කරනු ලබන විට රසදිය කෙන්ද ද පුසාරණය වේ. සිර කර ඇති වා කඳේ පීඩනය කෙරෙහි මෙම පුසාරණය බල නොපාන්නේ ඇයි දැයි පැහැදිලි කරන්න.	
(e)	මෙම පරීක්ෂණයේ දී සිර වී ඇති වා කඳෙහි දිග ($l_{ heta}$) සහ එහි උෂ්ණත්වය ($ heta$ °C) මැනීමට ඔබට කියා	
	ඇත. (i) උෂ්ණත්වමාන කියවීම මගින් සිර වී ඇති වායු කඳේ උෂ්ණත්වය ම ලබාදෙන බවට ද (ii) $l_{ heta}$ හි $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ ව අදාළ නියම දිග ම වන බවට ද සහතික කිරීමට ඔබ අනුගමනය කළ යුතු පරීක්ෂණාත්මක කුමචේදවල පුධාන පියවර ලියා දක්වන්න.	3
	(i) පරීක්ෂණාත්මක පියවර	
		١
•	(ii) පරීක්ෂණාත්මක පියවර	
		ĺ
	සිදුරේ විෂ්කම්භය ඒකාකාර වූ කේශික නළයේ සිරවී ඇති වියළි වා කඳෙහි $0~^{\circ}\mathrm{C}$ සහ $\theta~^{\circ}\mathrm{C}$ හි දී දිගවල් පිළිවෙළින් l_0 සහ $l_{ heta}$ නම්, $l_{ heta}$ සඳහා පුකාශනයක් γ_p, l_0 සහ $ heta$ ඇසුරෙන් ලියන්න. γ_p යනු වියළි වාතය සඳහා නියත පීඩනයේ දී පරිමා පුසාරණතාව වේ.	
(g)	y-අක්ෂය මත $l_ heta$ සහ x -අක්ෂය මත $^{f o}$ C වලින් $ heta$ වන පරිදි, අපේක්ෂිත පුස්තාරයේ දළ සටහනක් අඳින්න.	
	$l_{\theta} \uparrow$	
	θ (°C)	
		1

මෙම කිරයේ කිසිවක් හො ලිය:

	(h)		තිරයේ තිසිවක් තො ලියන්න
	(5)	2(a) රූපය 2(b) රූපය	
	(i)	බන්සන් දාහකය වෙනුවට විද්යුත් උදුන් තැටියක් (Electric hot plate) භාවිත කිරීමෙන් ඔබට මෙම පරීක්ෂණය නිවැරදි ව කිරීමට හැකි වේ ද? ඔබේ පිළිතුර පැහැදිලි කරන්න.	\bigcap
			\cup
3.	සහ වීදුර ඔබට කුඩු පුමා කැබ කඩං අකුර පරීක චල	මකා්ණාසුාකාර වීදුරු කුට්ටියක් වල අණ්වික්ෂයක් භාවිත කර වෙල වර්තන අංකය සෙවීමට කියා ඇත. ලයිකොපෝඩියම් ස්වල්පයක් ද වීදුරු කුට්ටියේ ණයට කපන ලද සුදු කඩදාසි ලේලක් ද සපයා ඇත. සුදු දාසි කැබැල්ලෙහි මැද 'X' රක් සලකුණු කර ඇත. මෙම ම්ෂණය සඳහා භාවිත කළ හැකි අණ්වීක්ෂයක රූපසටහනක් රූපයේ පෙන්වා ඇත.	
		(1) of the case of	
		A,B,C සහ D මගින් සලකුණු කර ඇති කොටස් හඳුන්වා දෙමින්, ඒවායේ කාර්යයන් කෙටියෙන් සඳහන් කරන්න.	
		කොටස හඳුන්වා දීම කාර්යය	
		A	
		B	
		C	
		D	

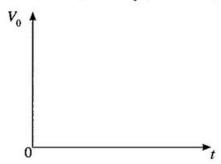
(b)	පරීක්ෂණය ආරම්භ කිරීමට පෙර චල අණ්වීක්ෂයක් හුරුපුරුදු කර ගැනීමක් කරන අතරතුර, තිරස් ගමන් කරවීමට අදාළ සියුම් සැකැසුම් ඇණය කරකැවීමේ දී අනුරූප ව'නියර් පරිමාණය ගමන් නොකළ බව ශිෂාපයක් නිරීක්ෂණය කළේ ය. මෙයට හේතුව දෙන්න.	50
(c)	චල අණ්වීක්ෂයක පුධාන පරිමාණයේ සහ ව'නියර් පරිමාණයේ විශාල කළ රූපයක් පෙන්වා ඇත. මෙම චල අණ්වීක්ෂයේ කුඩා ම මිනුම සෙන්ට්ම්ටර වලින් ගණනය කරන්න.	
	0 1 2 cm	
	0 10 20 30 40 50	
(d)	පරීක්ෂණය ඇරඹීමට පෙර ඔබ උපනෙතෙහි සිදු කරන සීරුමාරුව කුමක් ද?	
(e)	දැන්, දී ඇති කඩදාසි කැබැල්ල චල අණ්වීක්ෂයේ G වේදිකාව (stage) මත තබා වීදුරු කුට්ටිය තැබීමට පෙර, 'X' සලකුණ භාවිත කර අණ්වීක්ෂය මගින් පළමු මිනුම ගැනීමට ඔබට කියා ඇත. මෙය සාක්ෂාත් කරගැනීම සඳහා ඔබ අනුගමනය කරන පරීක්ෂණාත්මක කුමවේදයේ පුධාන පියවරවල් ලියා දක්වන්න.	
	ඉහත (e) හි සඳහන් කළ මිනුමට අනුරූප පුධාන පරිමාණයේ සහ ව'නියර් පරිමාණයේ අදාළ පිහිටුම් පහත දක්වා ඇත. මිනුමට අනුරූප පාඨාංකය සෙන්ට්ම්ටර වලින් ලියා දක්වන්න.	
	5 6 7 cm 0 10 20 30 40 50 40 50	
(g)	ඉහත (e) හි සඳහන් කළ පළමු මිනුම ගත් පසු ඔබ විසින් සිදු කළ යුතු අනෙක් මිනුම දෙකට අදාළ පරීක්ෂණාත්මක කුමමේදවල වැදගත් පියවරවල් ලියා දක්වන්න.	
	(i)	
	(ii)	


k, .:

	මෙම නිරයේ
(h) වෙනත් ශිෂායකු විසින් මෙම පරීක්ෂණය සිදු කිරීමේ දී ලබාගත් අදාළ මිනුම් තුනෙහි, පාඨාංක පහත දී ඇත.	කිසිවක් නො ලියන්
4.606 cm, 5.496 cm, 7.206 cm	
මෙම මිනුම් භාවිතයෙන් වීදුරුවල වර්තන අංකය ගණනය කරන්න.	
4 15 V 8 n R and market described and descri	
4. 1.5 V වියළි කෝෂ හතරක එකතුවක් මහින් dc මෝටරයක් කි්යාත්මක කරන ආකාරය (A) රූපයේ පෙන්වා ඇත. (B) රූපයේ පෙන්වා ඇති ආකාරයට සමදුරින් විදින ලද සිදුරු කට්ටලයක් සහිත Y තැටියක් dc මෝටරයේ අක්ෂයට ලම්බකව සවී කර ඇත. තැටිය භුමණය වන විට LED ය මහින් නිපදවෙන ආලෝකය	
සිදුරු හරහා ගොස් P පුකාශ දියෝඩය මතට පතිත වේ. (C) රූපය බලන්න. (D) රූපයෙහි පෙන්වා ඇති පුකාශ දියෝඩ පරිපථය V වෝල්ටීයතාවක් ජනනය කරයි.	
<u>y</u>	
dc @350cc : LED P P	
$-X \qquad \qquad \begin{array}{c} \downarrow \\ \downarrow $	
1.5 V 1.5 V 1.5 V 1.5 V (B) σ ₂ Θω (C) σ ₂ Θω	
(A) රූපය	
(a) X සංරචකය හඳුන්වන්න.	
(b) Y තැටියේ භුමණ වේගය ඔබ වෙනස් කරන්නේ කෙසේ ද?	
(c) සමාන්තරගතව $1.5\mathrm{V}$ කෝෂ හතරක් තිබීමේ වාසිය කුමක් ද?	
(d) තැටියෙහි සිදුරු 20 ක් ඇත්තේ නම් සහ එය තත්පරයකට භුමණ 5 ක් ඇති කරන්නේ නම්, ආලෝක කදම්බය (C) රූපයේ පෙන්වා ඇති P මත වදින සංඛ්‍යාතය කුමක් ද?	
(e) ඉහත $({ m D})$ හි පෙන්වා ඇති පුකාශ දියෝඩ පරිපථය මගින් ඇති කරන චෝල්ටීයතාව (V) කාලය (t)	
සමග වෙනස් වන්නේ කෙසේ දැයි පෙන්වීමට දළ සටහනක් අඳින්න. V හි උපරිම අගය $3~{ m V}$ යැයි උපකල්පනය කරන්න. V \blacktriangle	
0 ^t	

[අටවැනි පිටුව බලන්න.

සිරයේ සිහිවක් නො ලියන්න


(f) ඉහත (D) රූපයේ පුකාශ දියෝඩ පරිපථයෙහි පුතිදානය, දැන් පහත පෙන්වා ඇති පරිපථයෙහි පුදානයට සම්බන්ධ කරනු ලැබේ. පරිණාමකයේ පුාථමිකයෙහි සහ ද්විතීයිකයෙහි වට සංඛාාව පිළිවෙළින් 25 සහ 750 ක් වේ. C ධාරිතාවයේ අගය ඉතා විශාල බව උපකල්පනය කරන්න. සෙනර් වෝල්ටීයතාව, $V_z = 75$ Vලෙස ගන්න.

(i) ඉහත පරිපථයෙහි භාවිත කර ඇත්තේ කුමන වර්ගයේ පරිණාමකයක් ද?

(ii) සෙනර් දියෝඩය හරහා බලාපොරොත්තු විය හැකි චෝල්ටීයතාවෙහි අගය කුමක් ද?

(iii) කාලය t සමග V_0 පුතිදාන චෝල්ටීයතාව වෙනස් වන ආකාරය පෙන්වීමට දළ සටහනක් අඳින්න. පුතිදාන චෝල්ටීයතාවෙහි විශාලත්වය, V_0 අක්ෂය මත දක්වන්න.

(g) ඉහත විස්තර කර ඇති පරීක්ෂණය මගින් dc වලින් dc ට (dc to dc) චෝල්ටීයතා පරිවර්තකයක් සැදීමට කුමයක් සපයා ඇතැයි ශිෂායෙක් තර්ක කරයි. ඔබ මෙම තර්කය සමග එකඟ වන්නේ ද? පිළිතුර පැහැදිලි කරන්න.

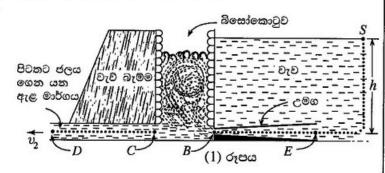
ങ്ങള 🛭 8ട്ടിക്ക് വൗട്ട്റിൽ / ശ്രസ്ര്വ് വളിവവ്യിനെവുടെ Lugy / All Rights Reserved

ලංකා විතාන දෙපාර්තමේන්තුව දී ලංකා විතාන දෙපාර්තමේන්**ලි ලංකනාට්කාන ලදරයාණ්තමේන්තුව**ා විතාන දෙපාර්තමේන්තුව ලී ලංකා විතාන දෙපාර්තමේන්තු இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்கைக்களில் நடித்த இடித்த இடித்த நடித்த நடித்த நடித்த நடித்த நடித்த Department of Examinations, Sri Lanka Department of Hyaninations, Sri Lanka Department of Examinations, Sri Lanka Department of Examinations of Exami

අධායන පොදු සහතික පනු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018

භෞතික ව්දනාව பௌதிகவியல் П Physics II

B කොටස — රචනා


පුශ්න **හතරකට** පමණක් පිළිතුරු සපයන්න. (ගුරුත්වජ ත්වරණය, $g = 10 \text{ N kg}^{-1}$)

- ${f 5}.$ (a) තරල පුවාහයක් සඳහා බ'නූලි සමීකරණය $P+rac{1}{2}dv^2+hdg=$ නියතයක්, යන්නෙන් ලිවිය හැකි අතර මෙහි සියලු ම සංකේතවලට සුපුරුදු තේරුම ඇත. $rac{1}{2}dv^2$ පදයට, ඒකක පරිමාවක ශක්තියේ **ඒකකය** ඇති බව පෙන්වන්න.
 - (b) ලොව ඇති උසස් වාරිමාර්ග පද්ධතිවලින් එකක් ශී් ලංකාවේ පවතී. ගොවීන්ට හා ගැමියන්ට ජලය සපයන එවැනි වාරිමාර්ග පද්ධතියක් (1) රූපයේ පෙන්වා ඇති පරිදි පුධාන අංග තුනකින් සමන්විත ය.

අංගය 1 : වැව හෝ ජලාශය සහ වැව් බැම්ම.

අංගය 2 : වායුගෝලයට නිරාවරණය වී ඇති වැවේ සිට පිටතට ජලය ගෙන යන ඇළ මාර්ගය.

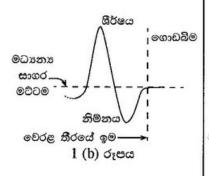
අංගය 3 : බිසෝකොටුව, බිත්ති කඑගල් හෝ ගඩොලින් සාදා ඇති ඍජුකෝණාසුාකාර ටැඹක හැඩැති සිරස් කුටීරය ((1) රූපය බලන්න). වැවෙන් ජලය පිට කිරීමට අවශා වූ විට, ජලය පළමුව බිසෝකොටුවට ඇතුළු වීමට ඉඩහරින අතර එය තුළ දී ජල පුවාහයේ වේගය විශාල

ලෙස අඩු වේ. බිසෝකොටුව තුළ දී එක්වරම ජල පුවාහයේ හරස්කඩ වර්ගඵලය වැඩිවීම මෙසේ අඩුවීමට එක් තේතුවකි. ඊට අමතරව, ජලය බිසෝකොටුවේ ගල් බිත්ති සමග ගැටීම නිසා ජල පුවාහයේ ශක්තියෙන් සැලකිය යුතු පුමාණයක් ද බිසෝකොටුව තුළ දී හානි වේ.

ඔබේ ගණනය කිරීම් සඳහා, රුපවල පෙන්වා ඇති තිත් ඉරි මාර්ග දිගේ අනවරත සහ අනාකුල පුවාහ තත්ත්වයන් යෙදිය හැකි බව ද වැව තුළ ජල මට්ටමේ උස නොවෙනස්ව පවතින බව ද උපකල්පනය කරන්න.

- (2) රූපයේ පෙන්වා ඇති පරිදි 1 සහ 2 අංගවලින් **පමණක්** සමන්විත වාරිමාර්ග පද්ධතියක් සලකන්න.
 - (i) වැව තුළ ජල මට්ටමේ උස h නම්, Q ලක්ෂායේ දී පිටවන ජලයේ ඓගය $v_{\scriptscriptstyle 1}$ සඳහා පුකාශනයක්, h සහ g ඇසුරෙන් වාුුත්පන්න කරන්න.
- (ii) h=12.8 m නම්, $v_{_{1}}$ හි අගය ගණනය කරන්න.
- (iii) Q ලක්ෂායේ දී ජලය මගින් ගෙන යන ඒකක පරිමාවක චාලක ශක්තිය ගණනය කරන්න. ජලයේ ඝනත්වය $1000~{
 m kg~m^{-3}}$ වේ.
- පිටතට ජලය වැව් බැම්ම ගෙන යන ඇළ මාර්ග (2) රූපය
- (c) පිටවන ජලයේ විනාශකාරී බලය පාලනය කිරීමට, (1) රූපයේ පෙන්වා
 - ඇති පරිදි, පූරාතන ඉංජිනේරුවරුන් විසින්, 3 වන අංගය වන බිසෝකොටුව වැවට එක් කරන ලදී.
 - (i) (1) රූපයේ පෙන්වා ඇති පරිදි වැවේ සිට බිසෝකොටුවට උමගක් හරහා ජලය ඇතුළු වේ. උමග කුමයෙන් සිහින් වන අතර, ඇත්දොර සහ බිහිදොරෙහි දී උමගේ හරස්කඩ වර්ගඵලයන් පිළිවෙළින් A සහ 0.6A බව උපකල්පනය කරන්න. උමග තුළ B ලක්ෂායේ දී ජල පුවාහයේ වේගය $v_{_B}$ ගණනය කරන්න. උමගේ E ඇත්දොරේ දී ජල පුවාහයේ වේගය 12 m s⁻¹ ලෙස ගන්න.

 - (ii) උමග තුළ B ලක්ෂායේ දී ජල පුවාහයේ පීඩනය P_B ගණනය කරන්න. වායුගෝලීය පීඩනය $1 \times 10^5~{
 m N~m^{-2}}$ වේ. (iii) ජල පුවාහයේ පීඩනය සහ වේගය පිළිවෙළින් P_B වලින් 75% සහ v_B වලින් 65% ක් වන අගයන්වල ඇති, පිටතට ජලය ගෙන යන ඇළ මාර්ගය තුළ වූ, C නම් ලක්ෂාය සලකන්න.
 - (1) C ලක්ෂායේ දී ජල පුවාහයේ පීඩනය P_C හි අගය **ලියන්න.**
 - (2) C ලක්ෂායේ දී ජල පුවාහයේ වේගය v_{C} හි අගය **ලියන්න.**
 - (iv) (1) රූපයේ පෙන්වා ඇති D ලක්ෂායේ දී, පිටවන ජලයේ ඓගය v_2 ගණනය කරන්න.
 - (v) ඉහත (b) (iii) හි ගණනය කළ අගයට සාපේක්ෂව (1) රූපයේ පෙන්වා ඇති D ලක්ෂායේ දී ජලය මගින් ගෙන යන ඒකක පරිමාවක චාලක ශක්ති **හානිගේ පුතිශතය** ගණනය කරන්න.
 - (vi) වාරිමාර්ග පද්ධතියට බිසෝකොටුව එක් කිරීමෙන්, පිටතට යන ජල පුවාහයේ විනාශකාරී බලය පාලනය කිරීමට ආදී ඉංජිනේරුවන්ට හැකි වූයේ කෙසේ දැයි සැකෙවින් පැහැදිලි කරන්න.

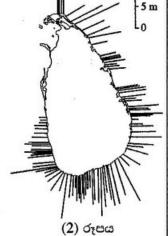

6. පහත සඳහන් ඡේදය කියවා පුශ්නවලට පිළිතුරු සපයන්න.

සාමානාঃයෙන් සුළඟ සහ ගුරුත්වය මගින් සාගර තරංග ඇති කරයි. සුනාමි තරංග සහ උදම් රළ මෙන්ම, සුළඟ මගින් සාගරයේ ඇති වන තරංග, ගුරුත්ව තරංග සඳහා උදාහරණ කිහිපයක් වේ. සාගර පාෂ්ඨය හරහා සුළඟ හමන විට සුළඟ මගින් සාගරයේ ජල පෘෂ්ඨය අඛණ්ඩව කළඹයි. මෙම තත්ත්වය යටතේ දී ජල-වාන අතුරු මුහුණතේ සමතුලිතතාව යළි ඇති කිරීමට ගුරුත්ව බලය උත්සාහ කරයි. මෙහි පුතිඵලයක් ලෙස සාගර තරංග නිර්මාණය වේ. ගැඹුරු-ජල තරංග සහ නොගැඹුරු-ජල තරංග වශයෙන් සාගර තරංග පුධාන ආකාර දෙකකට වර්ග කළ හැකි ය. ගැඹුරු-ජල තරංග සහ නොගැඹුරු-ජල තරංග යන පද සාගරයේ නියම ගැඹුර හා කිසි සම්බන්ධයක් නොමැත. සාගරයේ ගැඹුර (h), තරංගයේ (λ) තරංග ආයාමයෙන් අඩකට වඩා වැඩි, සාගරයේ ඇති තරංග ගැඹුරු-ජල තරංග ලෙස හැඳින්වේ. සාගරයේ ගැඹුර (h)කරංගයේ (λ) කරංග ආයාමයෙන් අඩකට වඩා අඩු වන විට ඒවා නොගැඹුරු-ජල තරංග ලෙස හැඳින්වේ. සාගරයේ දී ගැඹුරු-ජල තරංගවල තරංග ආයාම 1 m-1 km පරාසයක පවතින අතර නොගැඹුරු-ජල තරංගවල තරංග ආ<u>යාම</u> $10~\mathrm{km}$ - $500~\mathrm{km}$ පරාසයේ පවතී. ගැඹුර h වූ සාගරයක නොගැඹුරු-ජල තරංගවල පුචාරණ වේගය v හි අගය $v=\sqrt{g}h$ මගින් ලබාදෙයි. සාගරයේ සාමානා ගැඹුර 4 km පමණ වේ.

ජලය යට සිදුවන භූ කම්පන, සාගර පත්ලේ හෝ ඊට යට සිදුවන ගිනිකඳු පිපිරීම්, සහ විශාල උල්කාශ්මයක් සාගරය හා ඝට්ටනය වීම වැනි සාගරයේ මහා පරිමාණ කැළඹීම් හේතුකොට ගෙන පුබල සුනාමි ඇති වේ. සුනාමියක් යනු ගැඹුරු සාගරයේ දී 10 km-500 km පරාසයේ ඉතා දිගු තරංග ආයාම සහිත සාගර තරංග මාලාවක් වේ. වෙරළේ සිට ඉතා දුරින් ගැඹුරු සාගරයේ දී සුනාම් කරංගයේ හැඩය සයිනාකාර කරංගයකට ආසන්න කළ හැකි වුව ද 1 (a) රූපයේ දැක්වෙන පරිදි එය වෙරළ ආසන්නයේ නොගැඹුරු ජලයට ළඟා වන විට කුමයෙන් සංකීර්ණ ස්වරූපයක් අත්කර ගතී. සුනාම් තරංගයේ වෙරළට ළඟා වන පළමු කොටස ශීර්ෂයක් ද

නැතහොත් නිම්නයක් ද යන්න මත එය උදම් රළෙහි ශීසු නැග්මක් හෝ බැස්මක් ලෙස දිස් විය හැකි ය. සමහර අවස්ථාවල දී වෙරළ තී්රයේ ඉමේ හි දී තරංගයේ හැඩයේ ඉදිරිපස 1 (b) රූපයේ පෙන්වා ඇති පරිදි ඉතා සංකීර්ණ හැඩයක් ගත හැකි අතර එය වෙරළ තී්රයේ ඉම ශීඝුයෙන් පසුපසට යන ලෙස හා ඉන්පසුව පැමිණෙන මීටර කිහිපයක් දක්වා වර්ධනය වූ දැවැන්ත තරංග උසක් ලෙස දිස් විය හැකි ය. කරංග වේගය සහ කරංග උස යන දෙක ම මත රඳා පවතින, සාගර පෘෂ්ඨය හරහා සුනාමි කරංග ශක්තිය සම්පේෂණය කිරීමේ ශීසුතාව ආසන්න වශයෙන් නියත වේ. නොගැඹුරු ජලයට තරංග ඇතුළු වන විට සුනාමී තරංගයේ Hූ උසෙහි අගය

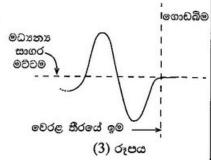
වෙරළ තීරයේ ඉම lගොඩබිම මධානාස සාගර මට්ටම සුනාම් තරංගය මුහුදු පතුල I (a) රූපය



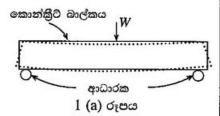
සාමානාෂයෙන් H_s = $H_d \left(rac{h_d}{h}
ight)^{\overline{4}}$ මගින් දෙනු ලැබේ.

මෙහි H_d යනු ගැඹුරු ජලයේ දී තරංග උස වන අතර, h_d සහ h_ϵ යනු පිළිවෙළින් ගැඹුරු සහ නොගැඹුරු ජලයේ ගැඹුරවල් ය.

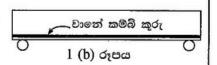
සාගරය හරහා සුනාමි තරංග පුචාරණය වන විට, තරංගයේ ශීර්ෂ වර්තනයට ලක්විය හැකි ය. එය ඇති වන්නේ තරංග ශීර්ෂය දිගේ ජලයේ ගැඹුර වෙනස් වන නිසා කරංගයේ කොටස් වෙනස් වේගවලින් ගමන් කරන බැවින් ය. එයට අමතරව, සුනාම් කරංගයේ ගමන් මගෙහි ඇති කුඩා දූපත්, ගල්පර වැනි බාධක සහ වෙරළ තී්රයට ආසන්නයේ සාගර පතුලේ උස්මිටි වෙනස්කම් නිසා මෙම තරංග නිරෝධනයට සහ විවර්තනයට භාජනය වේ. 2004 දෙසැම්බර් මස 26 වන දින සිදු වූ විනාශකාරී සුනාමියෙන් පසු විදාහඥයින් කණ්ඩායමක් විසින් ශීු ලංකාවේ මුහුදු තීරයේ සුනාමි තරංග උසවල් නිමානය කර ඇත. (2) රූපයේ ඇති රේඛාවල දිගෙන් මුහුදු තීරයේ සුනාමි තරංගයේ ශීර්ෂවල උසවල් පෙන්වයි. පුාථමික පුභවයේ සහ බාධකවලින් පරාවර්තිත සහ ව්වර්තික කරංග මගින් අධිස්ථාපනය වූ කරංග, මුහුදු කී්රයේ කරංග උසවල්වල විෂම රටාවට සහ හානියේ වීචලනයට හේතු පාදක වී ඇත.


- (a) සුළඟ සහ ගුරුත්වය මගින් සාගර තරංග ඇති වන්නේ කෙසේ දැයි කෙටියෙන් පැහැදිලි
- (b) සාගරයේ පවතින ගැඹුරු-ජල තරංග සහ නොගැඹුරු-ජල තරංග අතර වෙනස කුමක් ද?
- (c) ඡේදයේ සඳහන් කර ඇති, සුනාමි කරංග ඇති වන හේතු **තුන** මොනවා ද?
- (d) සාගරයේ ඇති විය හැකි සුනාමි කරංගවල ආකාරය (ගැඹුරු-ජල තරංග හෝ නොගැඹුරු-ජල තරංග) හඳුන්වා, 4 km සාමානාෳ ගැඹුරක් ඇති සාගරයේ සුනාමි තරංගවල වේගය m s^{-l} වලින් නිමානය කරන්න.

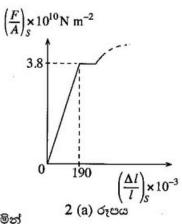
10 m

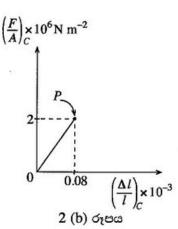

- (e) වෙරළට ආසන්න නොගැඹුරු ජලයට සුනාමි තරංග ළඟා වන විට ශීසුයෙන් එහි උස වැඩි වේ. මෙය සිදුවන්නේ ඇයි දැයි ගුණාත්මකව පැහැදිලි කරන්න.
- (f) සාගරයේ, ජලයේ ගැඹුර 6250 m වූ ස්ථානයක සුනාමි තරංගයක උස ගණනය කරන්න. ජලයේ ගැඹුර 10 m වූ ස්ථානයක තරංගයේ උස $5\,\mathrm{m}$ ලෙස ගන්න. සූනාමියෙහි තරංග ආයාමය සැලකිල්ලට ගනිමින් ගැඹුරු සාගරයේ සුනාමි තරංග අනාවරණය කිරීමට අපහසු ඇයි දැයි පැහැදිලි කරන්න.

- (g) වෙරළ තී්රයේ ඉමේ දී සුනාමි කරංගයක් 1 (b) රූපයේ පෙන්වා ඇති හැඩය ගන්නේ යැයි උපකල්පනය කරමින්, දැවැන්ත ජල කඳක් පැමිණීමට පෙර වෙරළ තී්රයේ ඉම ගොඩබ්මින් ඉවතට යන්නේ ඇයි දැයි කෙටියෙන් පැහැදිලි
- (h) ඉහත (g) පුශ්නයෙහි සඳහන් කළ සුනාම් තරංග ආකෘතිය (3) රූපයේ පෙන්වා ඇති පරිදි සයිනාකාර තරංග කොටසකට ආසන්න කළ හැකි නම්, වෙරළ තී්රයේ ඉම පසුපසට සාගරය දෙසට යාම ආරම්භ කළ මොහොත සහ ජල කඳ පෙර වෙරළ ති්රයේ ඉමට ළඟා වීම අතර පවතින කාලය **මනිත්තු** වලින් ගණනය කරන්න. සයිනාකාර තරංග කොටස සඳහා $v=10~{
 m m~s^{-1}}$ සහ $\lambda=18~{
 m km}$ ලෙස ගන්න.

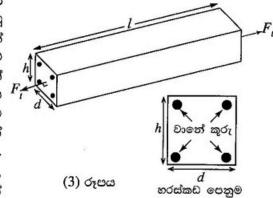


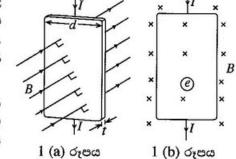
- (i) යාබදව පිහිටි ඉතා අඩු කරංග උසවල් සහිත පුදේශ හා සන්සන්දනය කළ විට තරංග උස ඉතා විශාල වන සමහර ස්ථාන (2) රූපයේ පෙන්වයි. කුමන සංසිද්ධිය මේ සඳහා හේතුපාදක විය හැකි ද? ඔබේ පිළිතුර පැහැදිලි කරන්න.
- (j) (2) රූපයේ පෙන්වා ඇති පරිදි 2004 දී සුනාම් තරංග දිවයිනේ බටහිර චෙරළට පවා ළඟා වීමට හේතුව ඇයි දැයි සැකෙවින් පැහැදිලි කරන්න.
- 7. (a) කොන්කී්ට් යනු සිමෙන්ති, වැලි, ගල් සහ ජලයෙහි තද බවට පත් වූ මිශුණයකි. වෙරගැන්වූ කොන්කී්ට් (Reinforced concrete) වනුහයන් යනු කොන්කී්ට් සහ වානේ කම්බි කුරුවලින් සමන්විත වනුහයන් ය. වානේ සහ කොන්කී්ට් වැනි සියලු ම දෘඪ වස්තූන් යම්තාක් දුරකට පුතාහස්ථ වේ. කොන්කී්ට් සම්පීඩනය යටතේ දී ශක්තිමත් වුවත් විතතිය යටතේ දී **දූඊවල** වන අතර, වානේ මෙම අවස්ථා දෙකම යටතේ දී ශක්තිමත් ය. සංයුක්තයක් ලෙස පුධාන වශයෙන් කොන්කීුට් සම්පීඩනයට පුතිරෝධී වන අතර පුධාන වශයෙන් වානේ කම්බි කුරු ආකතිය දරාගනී.


1 (a) රූපයේ පෙන්වා ඇති පරිදි W භාරයකට යටත්ව, ආධාරක දෙකක් මත තබා ඇති වාතේ කම්බි කුරු **නොමැති** ඍජුකෝණාසුාකාර හරස්කඩකින් යුත් සාමානා කොන්කී්ට් බාල්කයක් සලකන්න. මෙම තත්ත්වය යටතේ තිත් ඉරි මගින් පෙන්වා ඇති පරිදි බාල්කයේ පහළ කොටස විතතියක් අත්දකින අතර ඉහළ කොටස සම්පීඩනයක් අත්දකී.

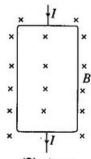


- (i) W හාරය යටතේ, සාමානා කොන්කීට් බාල්කයේ ඉරිතැලීමට වඩාත්ම ඉඩ ඇත්තේ කුමන (උඩ හෝ යට) පැත්ත ද?
- (ii) 1 (a) රූපයේ පෙන්වා ඇති තත්ත්වය වැඩිදියුණු කිරීම සඳහා 1 (b) රූපයේ පෙන්වා ඇති පරිදි, කොන්කීුට් නිෂ්පාදන අවස්ථාවේ දී වානේ කම්බි කුරු කොන්කීට් බාල්කයේ පතුලට ආසන්නයෙන් ඇතුළත් කරනු ලබයි. මෙමගින් කොන්කී්ට් බාල්කයේ භාර දරාගැනීමේ හැකියාව වැඩිදියුණු වී ඉරිතැලීම වැළැක්වෙනුයේ කෙසේ දැයි මෙම පුශ්නය ආරම්භයේ දී ඇති තොරතුරු උපයෝගී කරගතිමින් පැහැදිලි කරන්න.

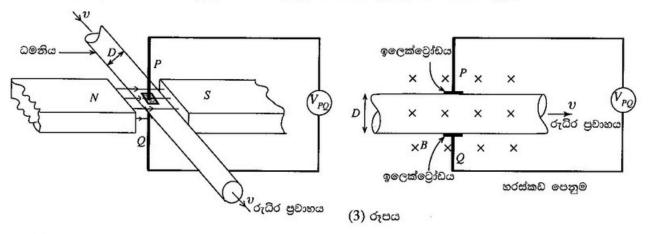

(b) මෘදු වානේ (S) සඳහා ආතනාා පුතාහාබලය $\left(rac{F}{A}
ight)_S$ - විකිුයාව $\left(rac{\Delta l}{l}
ight)_S$ අතර සම්බන්ධය 2 (a) රූපයේ පෙන්වා ඇති පරිදි ආදර්ශනය කළ හැකි ය. කොන්කීට් පහසුවෙන් කැඩෙන සුළු (භංගුර) දුවායෙක් වුව ද, **ආතනස බලයක් යටතේ** කොන්කීට්වල (C) ආතනාා පුතාහබලය $\left(rac{F}{A}
ight)_C$ - විකියාව $\left(rac{\Delta l}{l}
ight)_C$ අතර සම්බන්ධය $2\,(\mathrm{b})$ රූපයේ පෙන්වා ඇති පරිදි ආදර්ශනය කළ හැකි ය. වෙරගැන්වූ කොන්කීට්වල වානේ කම්බි කුරු කොන්කීට්වලට ඉතා හොඳින් බැඳී ඇති අතර, කොන්කී්ට් පඑදු වන තුරු ඒවා එකට බැඳී බාහිර භාරයන්වලට පුතිරෝධය දක්වයි. 2 (b) රූපයේ පෙන්වා ඇති වකුය P ලක්ෂායට පැමිණි විට **කොන්කීට් පඑදු වේ**.



- 2 (a) සහ 2 (b) රූප භාවිත කරමින්
- (i) මෘදු වානේවල යංමාපාංකය $E_{
 m g}$ ගණනය කරන්න.
- (ii) කොන්කී්ට්වල යංමාපාංකය E_{C} ගණනය කරන්න.


(c) දෘඪ තිරස් පෘෂ්ඨයක් මත තබා ඇති දිග l වූ වෙරගැන්වූ ඒකාකාර කොන්කීට් බාල්කයක් (3) රූපයේ පෙන්වා ඇත. එක එකෙහි දිග l වූ ඒකාකාර සිලින්ඩරාකාර සර්වසම, මෘදු වානේ කම්බි කුරු හතරකින් සහ කොන්කීට්වලින් බාල්කය වෙරගන්වා ඇත. භාවිත කළ කොන්කීට් සහ වානේවලට අදාළ පුතාාබලය-විකියාව සම්බන්ධතා පිළිවෙළින් 2 (a) සහ 2 (b) රූපවල දී ඇත. බාල්කය එහි හරස්කඩ වර්ගඵලය පුරාම ඒකාකාරව යොදා ඇති F_t සමස්ත ආතනා බලයකට යටත්ව තබා ඇති අතර ආතනා බලය යටතේ කොන්කීට් සහ මෘදු වානේ කම්බි කුරු Δl එකම විතතියක් ඇති කරන බව උපකල්පනය කරන්න.

- (i) කොන්කීට් මත ආතනය බලය (F_C) සඳහා පුකාශනයක්, E_C කොන්කීට්වල හරස්කඩ වර්ගඵලය A_C , l සහ Δl ඇසුරෙන් ලියන්න.
- (ii) මෘදු වානේ කම්බි කුරු **හතරම මත** ආනතා බලය $(F_{
 m S})$ සඳහා පුකාශනයක්, $E_{
 m S}$ මෘදු වානේ කම්බි කුරු **හතරෙහිම** මුළු හරස්කඩ වර්ගඵලය $A_{
 m S}$ l සහ Δl ඇසුරෙන් ලියන්න.
- (iii) කොන්කීට් පඑදු වීමට පෙර, සමස්ත ආතනා බලය $(F_{
 m p})$ කොන්කීට් සහ වානේ යන දෙකම මගින් දරා සිටියි නම්, වෙරගැන්වූ කොන්කීට් බාල්කය මත **සමස්ත** ආතනා බලය $F_{
 m p}$ සඳහා පුකාශනයක් ලබාගන්න.
- (iv) වෙරගැන්වූ කොන්කුීට් බාල්කයේ A හරස්කඩ වර්ගඵලය dh වේ. (3) රූපය බලන්න. බාල්කය සඳහා $l=2000~{
 m mm}$, සිලින්ඩරාකාර මෘදු වානේ කම්බි කුරක අරය $r=6~{
 m mm}$, $\Delta l=0.1~{
 m mm}$, $d=150~{
 m mm}$ සහ $h=250~{
 m mm}$ වේ.
 - (1) ඉහත (c) (iii) හි ලබාගත් පුකාශනය භෞතිකව වලංගු වන්නේ කුමන තත්ත්වයක් යටතේ ද? වෙරගැන්වූ කොන්කීට් බාල්කය සඳහා ඉහත දී ඇති දත්ත භාවිත කර (c) (iii) හි ලබාගත් පුකාශනය, බාල්කය සඳහා භෞතිකව වලංගු වන බව පෙන්වන්න.
 - (2) F_t හි අගය ගණනය කරන්න. (ඔබගේ ගණනය කිරීම සඳහා, $\frac{A_S}{A} \leq 3\%$ නම් $A_C = dh$ ලෙස ගන්න. එසේ නැතහොත් $A_C = dh A_S$ ලෙස ගන්න. $\pi = 3$ ලෙස ගන්න.)
- (v) වෙරගැන්වූ කොන්කීුට් බාල්කය පළුදු කරන අවම ආතනා බලය ගණනය කරන්න.
- 8. 1 (a) රූපයේ පෙන්වා ඇති පරිදි පළල d සහ ඝනකම t වූ, තඹ පටියක් ඉහළ සිට පහළට I ධාරාවක් රැගෙන යයි. පටියේ තලයට ලම්බක දිශාවට සහ එය තුළට පිහිටි සුාව ඝනත්වය B වූ ඒකාකාර චුම්බක ක්ෂේතුයක පටිය තබා ඇත. එම සැකසුමේ හරස්කඩ පෙනුම ද 1 (b) රූපයේ පෙන්වා ඇත. ආරෝපණ වාහක ඉලෙක්ටුෝන වන අතර ඒවා v_d ප්ලාවිත වේගයකින් ප්ලවනය වේ.

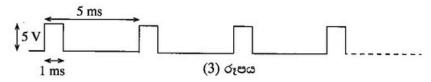

- (a) (i) 1(b) රූපයේ පෙන්වා ඇති ඉලෙක්ටෝනය (P) මත කියාකරන චුම්බක බලයේ දිශාව කුමක් ද? 1(b) රූපය ඔබේ පිළිතුරු පතුයට පිටපත් කර ගෙන මෙම බලයේ දිශාව පෙන්වීමට, ඉලෙක්ටෝනය මත ඊතලයක් පැහැදිලි ව අඳින්න.
 - (ii) දැන් ඔබ, 1 (b) රූපයේ පෙන්වා ඇති තඹ පටිය, ධන ලෙස ආරෝපිත වූ වාහක සහිත වෙනත් පටියකින් ප්‍රතිස්ථාපනය කරන්නේ නම්, ධන ලෙස ආරෝපිත වාහකයක් මත කි්යාකරන චුම්බක බලයේ දිශාව කුමක් ද?
- (b) (i) කාලය ගෙවීයන විට ඉහත (a)(i) හි විස්තර කළ තඹ තහඩුවෙහි පවතින ආරෝපණ සැලකු විට නව සමතුලිත තත්ත්වයක් ඇති වේ. (2) රූපය ඔබේ පිළිතුරු පතුයට පිටපත් කර ගෙන ධන ආරෝපණ නිරූපණය කිරීමට '+' ද සෘණ ආරෝපණ නිරූපණය කිරීමට '–' ද භාවිත කරමින් මෙම නව සමතුලිත තත්ත්වය විදහා දක්වන්න.

- (ii) (b) (i) හි සඳහන් කළ සමතුලික තත්ත්වය ඇති වීමට හේතුව පැහැදිලි කරන්න.
- (iii) p-වර්ගයේ අර්ධ සන්නායකයක ඇති කුහර ධන ලෙස ආරෝපිත වාහක බව සත‍‍‍‍ඨාපනය කිරීමට, ඔබ මෙම ආචරණය භාවිත කරන ආකාරය සැකෙවින් විස්තර කරන්න.
- (c) (i) හෝල් චෝල්ටීයතාව V_H සඳහා පුකාශනයක් $v_d^{}$ B සහ d ඇසුරෙන් වනුත්පන්න කරන්න.
 - (ii) තඹ වැනි සන්නායකයක් තුළින් ගමන් කරන I ධාරාව, $I=neAv_d$ ලෙස ලිවිය හැකි අතර මෙහි සියලු ම සංකේත සඳහා ඒවායේ සුපුරුදු තේරුම ඇත.
- (2) රූපය

- (1) $I = neAv_A$ සමීකරණය වපුත්පන්න කරන්න.
- (2) තඹ පටිය සඳහා n,e,t,I සහ B ඇසුරෙන් V_H සඳහා පුකාශනයක් ලබාගන්න.
- (3) ඒකාකාර $0.5~\mathrm{T}$ වූම්බක ක්ෂේතුයක ඇති ඝනකම $1\times 10^{-3}~\mathrm{m}$ වූ තඹ පටියක් සලකන්න. $I=48~\mathrm{A}$ සහ $V_H=1.5\times 10^{-6}~\mathrm{V}$ නම්, තඹවල ඒකක පරිමාවක ආරෝපණ වාහක සංඛ්‍යාව ගණනය කරන්න. $e=1.6\times 10^{-19}~\mathrm{C}$ ලෙස ගන්න.

(d) හෘදරෝග වෛදාවරු විද්යුත් චුම්බක පුවාහ මීටර භාවිත කරමින් ධමනි තුළ රුධිරයේ පුවාහ වේගය අධීක්ෂණය කරති. එවැනි පුවාහ මීටරයක අදාළ කොටස්වල දළ සටහනක් (3) රූපයේ පෙන්වා ඇත.

ධමිනි තුළ රුධිරය සමග රුධිර පුවාහ වේගය වන v වලින්ම එම දිශාවටම ගමන් කරන Na^+ සහ Cl^- විශාල අයන සාන්දුණයක් රුධිර ප්ලාස්මාවල අන්කර්ගත වේ. රුධිරයේ ඇති අයන, ආරෝපණ වාහක ලෙස හැසිරෙන බව උපකල්පනය කරන්න.


- (i) (3) රූපයේ පෙන්වා ඇති ධමනිය තුළින් රුධිරය ගලන විට, P ඉලෙක්ටෝඩයේ ධුැවීයතාව කුමක් ද? ඔබේ පිළිතුරට හේතුව දෙන්න.
- (ii) පද්ධතියට යෙදූ ඒකාකාර චුම්බක ක්ෂේතුයේ සුාව ඝනත්වය B ද ධමනියේ විෂ්කම්භය D ද නම්, P සහ Q ඉලෙක්ටෝඩ දෙක හරහා චෝල්ටීයතාව V_{PO} හි විශාලත්වය සඳහා පුකාශනයක් v, B සහ D ඇසුරෙන් ලියන්න.
- (iii) $V_{PQ} = 160$ μV, D = 5 mm සහ $B = 2 \times 10^3$ ගවුස් (1 ගවුස් = 10^{-4} T) නම්, ධමනිය තුළ රුධිරයේ චේගය v හි අගය ගණනය කරන්න.

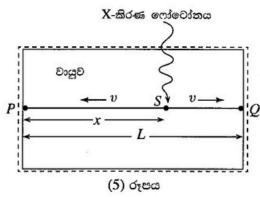
9. (A) කොටසට හෝ (B) කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

- $({f A})$ (1) රූපයේ පෙන්වා ඇති පරිපථයේ $5\ {f V}$ කෝෂයට ඇත්තේ නොගිණිය හැකි අභාාන්තර පුතිරෝධයකි. ${f Z}$ යනු පුතිරෝධකයකි.

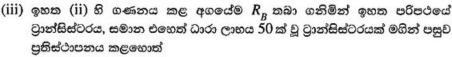
(1) びゃきゅ

- (a) S ස්විච්චිය වැසූ පසු Z පුතිරෝධකයේ අගය $1 \ k \ \Omega$ වන විට එහි ක්ෂමතා හානිය ගණනය කරන්න. (b) (2) රූපයේ පෙන්වා ඇති සෘජුකෝණාසුාකාර ABCD චෝල්ටීයතා ස්පන්දය ඇති කිරීම සඳහා
- දැන් ස්විච්චිය වරක් සංවෘත කර විවෘත කරනු ලැබේ. වෝල්ටීයතා ස්පන්දයේ විස්තාරය සහ පළල පිළිවෙළින් $5~\rm V$ සහ $10~\rm ms$ වේ. ස්පන්දය ඇති කළ විට එය පරිපථය තුළින් $2 \times 10^6~\rm m~s^{-1}$ වේගයක් සහිත ව ගමන් කරයි. පරිපථය තුළින් ගමන් කරන විට ස්පන්දයේ සෘජුකෝණාසුාකාර හැඩය නොවෙනස්ව පවතින බව උපකල්පනය කරන්න.
- D 10 ms A (2) σ_ξεω
- (i) $2 \, {
 m cm}$ දිගක් සහිත Z පුතිරෝධකයේ දිග හරහා ගමන් කිරීමට චෝල්ටීයතා ස්පන්දයේ AB බෑවුමට කොපමණ කාලයක් ගත වේ ද?
- (ii) Z පුතිරෝධකයේ සම්පූර්ණ දිග හරහාම $5\,
 m V$ මුළු චෝල්ටීයතාව ආසත්ත වශයෙන් කොපමණ කාලයක් පවතී ද?
- (iii) Zපුතිරෝධකයේ අගය $1\,k\,\Omega$ ලෙස උපකල්පනය කරමින් පුතිරෝධකය තුළ චෝල්ටීයතා ස්පන්දය මගින් හානි කරනු ලබන ශක්තිය ගණනය කරන්න.
- (c) (3) රූපයේ පෙන්වා ඇති සෘජුකෝණාසාකාර වෝල්ටීයතා තරංග ආකෘතිය ලබාගැනීම සඳහා දැන් S ස්විච්චිය අඛණ්ඩව සංවෘත සහ විවෘත කරනු ලැබේ.

(3) රූපයේ පෙන්වා ඇති පරිදි ස්පන්දයක පළල $1~{
m ms}$ සහ චෝල්ටීයතා තරංග ආකෘතියේ ආවර්ත කාලය $5~{
m ms}$ වේ. මෙම තත්ත්වය යටතේ Z පුතිරෝධකයේ අගය $1~{
m k}~\Omega$ වන විට එය තුළ ක්ෂමතා හානිය ගණනය කරන්න.


(d) Yස්පන්දන ධාරා පුභවයක් මගින් නිපදවන ලද විස්තාරය I_0 සහ පළල T_0 වූ සෘජුකෝණාසුාකාර ධාරා ස්පන්දයක් (4) රූපයේ පෙන්වා ඇති පරිදි දිග $l_{
m t}$ සහ l_2 වන පුතිරෝධක කම්බි දෙකක් තුළට ගමන් කරයි. පරිපථයේ ඇති අනෙක් සෑම සම්බන්ධක කම්බියකම නොගිණිය හැකි පුතිරෝධ ඇතැයි උපකල්පනය කරන්න. දිග $l_1^{}$ සහ $l_2^{}$ ද එක එකෙහි හරස්කඩ ක්ෂේතුඵලය A ද වූ පුතිරෝධක කම්බි දෙක සාදා ඇත්තේ පුතිරෝධකතාව ho

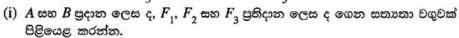
(i) R_1 සහ R_2 යනු පිළිවෙළින් දිග l_1 සහ l_2 වන කම්බිවල පුතිරෝධ නම්, $R_{_{
m 1}}$ සහ $R_{_{
m 2}}$ සඳහා පුකාශන ලියන්න.

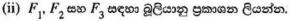

(ii) දිග l_1 සහ l_2 වන කම්බි හරහා පිළිවෙළින් ගමන් කරන ධාරා ස්පන්දයන්ගේ I_1 සහ I_2 විස්තාර සඳහා පුකාශන, I_0 l_1 සහ l_2 ඇසුරින් වනුත්පන්න කරන්න.

(e) (5) රූපයේ පෙන්වා ඇති පරිදි වායුමය X-කිරණ අනාවරකයක් සුදුසු වායුවකින් වට වී ඇති දිග L වූ PQ පුතිරෝධක ඇනෝඩ කම්බියකින් සමන්විත ය. (5) රූපයේ පෙන්වා ඇති පරිදි පටු ඉලෙක්ටුෝන ස්පන්දයක් ඇතෝඩ කම්බියෙහි S ලක්ෂායට ආසන්නව **වායුව තුළ** ඇති කරමින් X-කිරණ ෆෝටෝනයක් වායුව මගින් අවශෝෂණය කරගත්තේ යැයි සිතමු. මෙම ඉලෙක්ටුෝන ස්පන්දය වායුවෙන් p ඇදගෙන PQ ඇනෝඩ කම්බිය මත S ලක්ෂායේ දී ඉලෙක්ටුෝන ධාරා ස්පන්දයක් ඇති කිරීමේ හැකියාවක් ඇනෝඩ කම්බියට ඇත. අනතුරුව ඉලෙක්ටුෝන ධාරා ස්පන්දය දෙකට බෙදී u වේගයෙන් කම්බියේ දෙපැත්තට ගමන් කරයි.

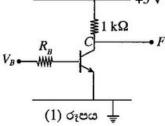
 Δt යනු ඉලෙක්ටුෝන ධාරා ස්පන්ද දෙක ඇනෝඩ කම්බියේ Pසහ Q දෙකෙළවරට ළඟා වීමට ගන්නා කාලයන් අතර **පරහරය** නම්, X-කිරණ ෆෝටෝනය අවශෝෂණය කරගත් S ලක්ෂාායට P ලක්ෂාායේ සිට දුර වන x සඳහා පුකාශනයක් $\Delta t,\ v$ සහ L මගින් වනුත්පන්න කරන්න.

- $({f B})(a)$ (1) රූපයේ පෙන්වා ඇති පරිපථය සාදා ඇත්තේ ධාරා ලාභය 100 ක් වූ සිලිකන් ටුාන්සිස්ටරයක් භාවිත කිරීමෙනි. ටුාන්සිස්ටරයේ පාදම-විමෝචක සන්ධිය ඉදිරි නැඹුරු කිරීමට $0.7~\mathrm{V}$ අවශා බව උපකල්පනය කරන්න.
 - (i) සංග්‍රාහක ප්‍රතිරෝධකය හරහා තිබිය හැකි උපරිම ධාරාව ගණනය කරන්න.
 - (ii) $V_B = 5~\mathrm{V}$ සඳහා ඉහත (i) හි තත්ත්වය සහතික වන R_B සඳහා උපරීම අගය ගණනය කරන්න.



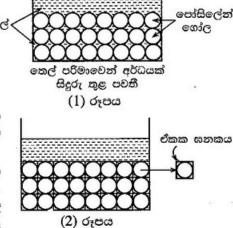

- (1) $V_{R} = 5 \text{ V}$ සඳහා F පුතිදානයෙහි චෝල්ටීයතාව ගණනය කරන්න.
- (2) ටුාන්සිස්ටරය කිුයාකරන නව විධිය කුමක් ද?
- (b) ස්වකීය කොටු සටහන (block diagram) (2) රූපයේ දී ඇති, සංඛාහංක පරිපථය කිුයාත්මක වන්නේ පහත පරිදි ය. A සහ B පුදාන එක එකක් ද්වීමය 1 හෝ 0 භාර ගනී. $F_1,\ F_2$ සහ F_3 පුතිදාන වන අතර මෙහි

A < B වන විට පමණක් $F_{\parallel} = 1$ වේ, නැතහොත් $F_{\parallel} = 0$ වේ.


A=B වන විට පමණක් $F_2=1$ වේ, නැතභොත් $F_2=0$ වේ.

A>B වන විට පමණක් $\overline{F_3}=1$ වේ, නැතභොත් $\overline{F_3}=0$ වේ.

(iii) ඉහත දී ඇති තත්ත්වයන්ට අනුව කිුයාත්මක වන තාර්කික පරිපථයක්, තාර්කික ද්වාර භාවිත කර අඳින්න.

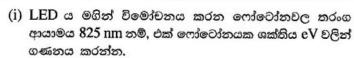

(2) රූපය

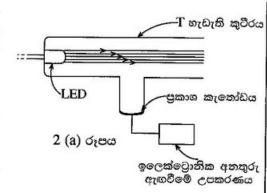
10. (A) කොටසට හෝ (B) කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

- (A) බැදීම යනු ආහාර සකස් කිරීමේ කුමචේදයක් වන අතර එය ආහාර පිළියෙල කිරීමට රත් වූ තෙල් තාපන මාධෳයක් ලෙස භාවිත කිරීම හා සම්බන්ධ වේ. බැදිය යුතු ආහාර දුවා පුමාණයට සාපේක්ෂව විශාල තෙල් පුමාණයක් භාවිත කර බැදීම සිදුකරන්නේ නම්, එය ගැඹුරු තෙලෙහි බැදීම (deep frying) ලෙස හැඳින්වේ. බැදීම සිදුකරන්නේ සාපේක්ෂව කුඩා තෙල් පුමාණයක් භාවිත කර නම්, එය කලතා බැදීම (stir frying) ලෙස හැඳින්වේ. සාමානෳයෙන් ගැඹුරු තෙලෙහි බැදීම සිදුවන්නේ $190\,^{\circ}\mathrm{C} - 140\,^{\circ}\mathrm{C}$ උෂ්ණත්ව පරාසයේ දී වන අතර කලතා බැදීම සිදුවන්නේ $115\,^{\circ}\mathrm{C} - 100\,^{\circ}\mathrm{C}$ උෂ්ණත්ව පරාසයේ දී ය. තෙල් විශාල පුමාණයක් අඛණ්ඩව පුතිස්ථාපනය කළ යුතු නිසා ගැඹුරු තෙලෙහි බැදීම මිල අධික වන නමුත් බොහෝ අවස්ථාවල ගැඹුරු තෙලෙහි බැදීම මගින් වඩා රසවත් ආහාර ලබාදෙයි.
 - ශිෂායකු විසින් කුඩා තෙල් පුමාණයක් භාවිත කර වඩා වැඩි උෂ්ණත්ව සාක්ෂාත් කරගැනීමේ උත්සාහයක් සඳහා කරන ලද විමර්ශනයක පුතිඵල පහත දී ඇත. පද්ධතියේ තාප ධාරිකාව වැඩි කර එමගින් වඩා වැඩි උෂ්ණත්වයන් ලබාගැනීමට ඔහු කුඩා තෙල් පුමාණයක මිශු කරන ලද, නැවත භාවිත කළ හැකි කුඩා ඝන පෝසිලේන් ගෝල පුමාණයක් භාවිත කළේ ය.
 - (a) පුථම පියවර ලෙස ශිෂායා බාහිර පෘෂ්ඨ පරිවාරක දුවායකින් ආවරණය කර ඇති සුදුසු බඳුනකට $0.2~{
 m kg}$ තෙල් පුමාණයක් දමා කුඩා ගිල්ලුම් තාපකයක් මගින් 200 °C දක්වා රත් කළේ ය. ඉන්පසු තාපකය ඉවත් කර ක්ෂණිකව වියළි ආහාර දුවාසයක $0.2~\mathrm{kg}$ පුමාණයක් එයට එකතු කර තෙල් සමග මිශු කරන ලදී. තෙලෙහි සහ ආහාර දුවායේ විශිෂ්ට තාප ධාරිතා පිළිවෙළින් $1650~\mathrm{J~kg^{-1}~^\circ C^{-1}}$ සහ $1600~\mathrm{J~kg^{-1}~^\circ C^{-1}}$ ද නම් සහ ආහාර දුවායේ ආරම්භක උෂ්ණත්වය $30~^{\circ}\mathrm{C}$ ද නම් මිශුණයේ අවසාන උෂ්ණත්වය ගණනය කරන්න. හිස් බඳුනේ තාප ධාරිතාව, තෙල්හි තාප ධාරිතාව හා සසඳන විට නොගිණිය හැකි යයි ද පරිසරයට වන තාප හානිය නොසලකා හැරිය හැකි යයි ද උපකල්පනය කරන්න.
 - (b) ශිෂායා විසින් ඊළඟට බඳුන හිස් කර අලුත් තෙල් ඉහත (a) හි පුමාණය ම (0.2 kg) දමා කුඩා ඒකාකාර ඝන පෝසිලේන් ගෝල එක්තරා පුමාණයක් ද එකතු කරන ලදී. එකතු කරන ලද ගෝල (1) රූපයේ පෙන්වා ඇති පරිදි විධිමත් ලෙස ඇසිරී ඇතැයි (ව්ධිමත් ඇසිරීමක්) උපකල්පනය කරන්න. ගෝල එකතු කරන ලද්දේ ගෝල ඇසිරෙන විට ඇති කරන ලද හිදැස් කුළට බඳුනේ ඇති තෙල් පරිමාවෙන් අර්ධයක් පිරී යන ආකාරයට ය. ((1) රූපය බලන්න.)
 - (i) ගෝල විධිමත් ලෙස ඇසිරී ඇති නිසා (2) රූපයේ දක්වා ඇති පරිදි ගෝල මගින් අයත් කරගෙන ඇති ඒකක ඝනක සැලකීමට ගෙන **ගෝලවල මුළු පරිමාව** හිදැස් කුළ අඩංගු තෙල් පරිමාවට සමාන බව පෙන්වන්න. (π = 3 ලෙස ගන්න.)
 - (ii) තෙල්හි සහ පෝසිලේන්හි ඝනක්ව පිළිවෙළින් 900 kg m⁻³ සහ 2500 kg m⁻³ නම්, පෝසිලේන් ගෝලවල ස්කන්ධය ගණනය කරන්න.
 - (iii) ශිෂායා විසින් ඉන්පසු පෝසිලේන් ගෝල සහිත තෙල් බඳුන 200 °C දක්වා රත් කර, ඉහත (a) හි සඳහන් කළ ආකාරයට නැවතත් $30\,^\circ\mathrm{C}$ හි ඇති එම ආහාර දුවායෙන් එම පුමාණය ම (0.2 kg) එකතු කර මිශු කරන ලදී. පෝසිලේන් හි විශිෂ්ට තාප ධාරිතාව $1000~{
 m J}~{
 m kg}^{-1}~{
 m o}{
 m C}^{-1}$ නම්, මිශුණයේ අවසාන උෂ්ණත්වය ගණනය කරන්න. හිස් බඳුනේ තාප ධාරිතාව සහ පරිසරයට වන තාප හානිය නොසලකා හරින්න.
 - (c) ඉහත විමර්ශනයේ දී භාවිත කළ ඒවාට වඩා කුඩා පෝසිලේන් ගෝල භාවිත කළහොත් ලැබෙන වාසිය කුමක් ද?
- $({f B})(a)$ (1) රූපයේ පෙන්වා ඇත්තේ, පුකාශ විද්යුත් ආචරණ පරීක්ෂණය සිදුකිරීමට අවශා ඇටවුමක අතාවශා කොටස් වේ.
 - (i) D ලෙස ලකුණු කර ඇති කොටස වෝල්ටීයතා සැපයුමකි. පුකාශ විද්යුත් ධාරාව (I) - විභව අන්තරය (V) අතර ලාක්ෂණිකය ලබාගැනීම සඳහා D ව තිබිය යුතු වැදගත් ම ලක්ෂණ දෙක මොනවා ද?
 - (ii) A සහ B ලෙස ලකුණු කර ඇති කොටස් නම් කරන්න.
 - කොළ [තරංග ආයාමය $\lambda_{_{q}}$] සහ රතු [තරංග ආයාමය $\lambda_{_{q}}(>\lambda_{_{q}})$] ඒකවර්ණ ආලෝක කදම්බ දෙකක් වර්කට එක් කදම්බය බැගින් A මතට ජිතනය වීමට සලස්වනු ලැබේ. ආලෝක කදම්බවල සංඛාහතයන් A සාදා ඇති දුවායේ දේහලී සංඛාහතයට වඩා වැඩි ය.

(1) කොළ සහ රතු වර්ණ සඳහා, V සමග I හි විචලනය **එකම** පුස්තාරයක දැක්වීමට දළ සටහනක් අඳින්න. කොළ සහ රතු වර්ණ සඳහා වන වකු පිළිවෙළින් G සහ R ලෙස පැහැදිලි ව සලකුණු කළ යුතු ය. කොළ සහ රතු වර්ණ සඳහා, පතනය වන ෆෝටෝනවලින් එකම පුතිශතයක් පුකාශ ඉලෙක්ටුෝන විමෝචනය කරන්නේ යැයි උපකල්පනය කරන්න.

(2) කොළ සහ රතු වර්ණ සඳහා, නැවතුම් විභවයන් අතර පරතරය ΔV ද සංඛm 2ාතයන් අතර පරතරය Δf ද නම්, අයින්ස්ටයින්ගේ පුකාශ විදාුුත් ආචරණ සමීකරණය භාවිතයෙන්, $\frac{\Delta f}{\Delta V}$ අනුපාතය සඳහා පුකාශනයක්, ප්ලාන්ක් නියතය h සහ ඉලෙක්ටුෝනයක ආරෝපණයේ විශාලත්වය e ඇසුරෙන් ලබාගන්න.




ආලෝක කදම්බය

(1) රූපය

(b) 2 (a) රූපයේ පෙන්වා ඇති පරිදි එක්තරා පුකාශ විද්යුත් දුමාර අනතුරු අඟවන පද්ධතියක් (smoke alarm system) ප්‍රධාන වශයෙන් ඒකවර්ණ ආලෝක විමෝචක දියෝඩයක් (LED) සවි කර ඇති T-හැඩැති කුටීරයක්, ප්‍රකාශ කැතෝඩයක් සහ ඉලෙක්ටොනික අනතුරු ඇඟවීමේ උපකරණයකින් (alarm) සමන්විත ය.

දුමාර-නොමැති සාමානා තත්ත්වය යටතේ දී 2 (a) රූපයේ පෙන්වා ඇති පරිදි LED ආලෝක කදම්බයේ ෆෝටෝන පුකාශ කැතෝඩයේ ගැටීමකින් තොරව කුටීරය තුළින් ඉවතට ගමන් කරයි. දුමාරය කුටීරය තුළට ඇතුළු වන විට ෆෝටෝනවලින් යම් පුමාණයක් දුම් අංශූන් සමග ගැටී 2 (b) රූපයේ පෙන්වා ඇති පරිදි ඒවායේ තරංග ආයාම වෙනස් නොවී විවිධ දිශා ඔස්සේ ගමන් කරයි. එසේ ගැටුණු ෆෝටෝන සංඛ්‍යාව කුටීරය තුළ ඇති දුම් අංශූන් සංඛ්‍යාවට සමානුපාතික වේ. ගැටුණු ෆෝටෝනවලින් එක්තරා සංඛ්‍යාවක් ප්‍යාශ කැතෝඩය :== මත පතනය වන අතර එමගින් කුඩා ප්‍යාශ විදුහුත් ධාරාවක් ඇති කරයි. ප්‍රමාණවත් තරම් ෆෝටෝන සංඛ්‍යාවක් ප්‍යාශ කැතෝඩය මත පතනය වූ විට එය ඉලෙක්ටොනික අනතුරු ඇඟවීමේ උපකරණය නාද කිරීමට තරම් ප්‍රමාණවත් ධාරාවක් ඇති කරයි.

 $h = 6.6 \times 10^{-34} \, \mathrm{J}$ s, රික්තයක් තුළ ආලෝකයේ වේගය $c = 3 \times 10^8 \, \mathrm{m \ s^{-1}}$ සහ $\mathrm{leV} = 1.6 \times 10^{-19} \, \mathrm{J}$ ලෙස ගන්න.

- (ii) කාර්ය ශිුතයන් පිළිවෙළින් $1.4\,\mathrm{eV}$ සහ $1.6\,\mathrm{eV}$ වූ දුවාවලින් සාදන ලද X සහ Y පුකාශ කැතෝඩ දෙකක් ඔබට ලබා දී ඇත. ඉහත (b) (i) හි සඳහන් කළ LED ය සහිත දුමාර අනතුරු අඟවන පද්ධතියක් නිපදවීම සඳහා සුදුසු පුකාශ කැතෝඩය $(X\,\mathrm{evi}\ Y)$ කුමක් ද? ඔබේ පිළිතුර සනාථ කරන්න.
- (iii) LED හි ක්ෂමතාව 10 mW වේ. ශක්තියෙන් 3% ක් පමණක් තරංග ආයාමය 825 nm වූ ආලෝකය නිපදවීමට වැය වේ නම්, LED ය මගින් තත්පරයක දී පිට කළ ෆෝටෝන සංඛ්‍යාව ගණනය කරන්න.
- (iv) අනතුරු ඇඟවීමේ උපකරණය කිුිියාකරවීමට, LED ය මහින් තත්පරයකට විමෝචනය කළ ෆෝටෝනවලින් යටත් පිරිසෙයින් 20% ක් පුකාශ කැතෝඩය ලබාගත යුතු ය. අනතුරු ඇඟවීමේ උපකරණය කිුිිියාකරවීමට තත්පරයක් තුළ දී පුකාශ කැතෝඩය මතට පතිත විය යුතු අවම ෆෝටෝන සංඛ්‍යාව ගණනය කරන්න.
- (v) පුකාශ කැතෝඩය මත ෆෝටෝන පතනය වන විට, පතනය වන ෆෝටෝනවලින් කොටසක් පමණක් පුකාශ ඉලෙක්ටෝන වීමෝචනයට දායකත්වය දක්වයි. පතිත ෆෝටෝනවලින් 10% ක් පමණක් පුකාශ ඉලෙක්ටෝන වීමෝචනය කරන බව උපකල්පනය කරමින්, අනතුරු ඇඟවීමේ උපකරණය කිුිියාකරවීමට පුකාශ කැතෝඩය මගින් නිපදවිය යුතු අවම පුකාශ විද්යුත් ධාරාව ගණනය කරන්න. $e=1.6\times10^{-19}$ C ලෙස ගන්න.

Visit Online Panthiya You Tube channel to watch Combined Maths and Chemistry Videos

