the second	AT /201	17/10/S-I			•5			1.0	*
			பீனி / முழுப் பதிப்புரில	மையுடையது / А	Il Rights Res	erved]			10 1
0461	ອີສາກ່າສ (ຜິດ(සේ ගුර්කාන යුක්ත ගා	⁵ එගෝස්තිභාව මූමාශ අධානයන පො <u>සබාබා[1</u> බා mහු <u>General Certific</u> නීතය	ூற்றதான் டூ கல்கிக த் தராதரப்	பற்றிராக பற்றிராக பற்றிர (உ	Manons, S.I.F.a (886) Store wij <u>st</u>iù wij	600 , 201	017 @4561019	o දෙපාර්තරමන්තුව න්තානාස්යභාග ations, Sri Lanka දෙපාරිතරමන්තුව න්නානාස්යභාග
4	මූණ Cor	ணந்த க nbined N	கணிதம் Aathematics	I ·	10 5			மூன்று மணித் Three hours	தியாலம்
	600		පුශ්න පතුය කෙ)	
	A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).								
	* A කොටස:								
								පිළිතුරු, සපයා අ විත කළ හැකි ය.	ැති ඉඩෙහි
		* Bea	හටස:						
		පුශ්න	ා පහකට පමණක්	පිළිතුරු ස	පයන්න. ඔම	බ පිළිතරු, සපය	හ ඇති	කඩයසිවල ලියන්	න.
1							•		
1	සිටින පරිදි කොටස් දෙක අමුණා විහාග ශාලාධිපතිට භාර දෙන්න. * පුශ්න පතුයෙහි B කොටස පමණක් විහාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.						873).		
f		යා ප්රත්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි. පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.							
		((10) සංයුක්ත ගණිය) J	າວຕ ຕະໂຫຼາ ດອະ			
		කොටස	පුශ්න අංකය	ලකුණු	-				
			1			I පතුය			
			2		-				
			3		-	Π පතුය			_
			. 4		_	එකතුව			
		A	5			අවසාන ලකුද	5		
			6			(-		
			7						
			8						
			9	-			qt	වසාන ලකුණු	_
			10			ඉලක්කමෙන්			
			11			අකුරෙන්			
			12			<u> </u>			
			13					සංකේත අංක	
		В	14			උත්තර පතු පර	රීක්ෂක		
			15			පරික්ෂා කළේ:	1		
			16				2		

අධීක්ෂණය කළේ:

•

17

එකතුව පුතිශනය

ŧ

2

[දෙවැනි පිටුව බලන්න.

AL/2017/10/S-I -2-					
_	<u>A</u> කොටස				
1.	ගණීත අගපුහන මූලධර්මය භාවිතයෙන්, සියලු $n \in \mathbb{Z}^+$ සඳහා $\sum_{r=1}^n r(3r+1) = n(n+1)^2$ බව සාධනය කරන්න				
	· · · · · · · · · · · · · · · · · · ·				
	•••••••••••••••••••••••••••••••••••••••				
2.	$x^2-1 \geq x+1 $ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.				
1					
	••••••				
	•••••••••••••••••••••••••••••••••••••••				
	·······				

[තුන්වැනි පිටුව බලන්න.

AL/2017/10/S-I

١.

4

1.00	ආගන්ඩ් සටහනක, $\operatorname{Arg}(z-2i)=rac{\pi}{3}$ යන්න සපුරාලන z සංකීර්ණ සංඛාහ නීරූපණය කරන ලක්ෂාවල පථය
	වන / හි දළ සටහනක් අඳින්න.
	P හා Q යනු ඉහත ආගන්ඩ් සටහනෙහි පිළිවෙළින් 2i හා √3 + 5i සංකීර්ණ සංඛාහ නිරූපණය කරන ලක්ෂා යැයි ගනිමු. PQ දුර සොයා Q ලක්ෂාය l මත පිහිටන බව පෙන්වන්න.
6	
1.	INFINITY යන වචනයෙහි අකුරු අට, වෙනස් ආකාර කීයකට පේළියක පිළියෙල කළ හැකි ද?
	මෙම පිළියෙල කිරීම්වලින් කොපමණක
	(i) I අකුරු තුන ම එක ළඟ තිබේ ද?
	(ii) හරියටම එක I අකුරක් හා N අකුරු දෙක ම මුල් අකුරු තුන ලෙස තිබේ ද?

[ගතරවැනි පිටුව බලන්න.

.

.

190

AL/2	2017/10/S-I	-4-
-		2 2
5. ($0 < \alpha < \frac{\pi}{2} \omega$	ැයි ගනිමු. $\lim_{x \to \alpha} \frac{x^3 - \alpha^3}{\tan x - \tan \alpha} = 3\alpha^2 \cos^2 \alpha$ බව පෙන්වන්න.
		•••••••••••••••••••••••••••••••••••••••
1		
	••••••	
13 		
		$\sqrt{b-a}\sin x$ and $\sin x$
6.	0 <a<b th="" යැයි<=""><th>පි ගනිමු. $\frac{\mathrm{d}}{\mathrm{d}x}\sin^{-1}\left(\sqrt{\frac{b-a}{b}}\cos x\right) = -\frac{\sqrt{b-a}\sin x}{\sqrt{a}\cos^2 x + b\sin^2 x}$ බව පෙන්වන්න.</th></a	පි ගනිමු. $\frac{\mathrm{d}}{\mathrm{d}x}\sin^{-1}\left(\sqrt{\frac{b-a}{b}}\cos x\right) = -\frac{\sqrt{b-a}\sin x}{\sqrt{a}\cos^2 x + b\sin^2 x}$ බව පෙන්වන්න.
	[sin x dr. energenter
1	ම නයන, ∫ √	$\frac{\sin x}{a\cos^2 x + b\sin^2 x}$ dx සොයන්න.
1		
	•••••	
-		2
	••••••	
1		
		·····

•

AL/2017/10/S-I

7.	C වකුයක්, $0 < \theta < \frac{\pi}{2}$ සඳහා $x = 3\cos\theta - \cos^3\theta$, $y = 3\sin\theta - \sin^3\theta$ මගින් පරාමිතිකව දෙනු ලැබේ.
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\cot^3 \theta$ බව පෙන්වන්න.
	ස්පර්ශ රේබාවේ අනුකුමණය – 1 වන පරිදි C වකුය මත වූ P ලක්ෂායෙහි ඛණ්ඩාංක සොයන්න.
	<u>.</u>
8.	l_1 හා l_2 යනු පිළිවෙළින් $3x - 4y = 2$ හා $4x - 3y = 1$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු.
1	
	(i) l_1 හා l_2 අතර කෝණවල සමච්ඡේදකයන්හි සමීකරණ ලියා දක්වන්න.
	 (i) l₁ හා l₂ අතර කෝණවල සමච්ඡේදකයන්හි සමීකරණ ලියා දක්වත්ත. (ii) l₁ හා l₂ අතර සුළු කෝණයේ සමච්ඡේදකයෙහි සමීකරණය සොයන්න.

•

	ද වෘත්තයෙහි සමීකරණය සොයන්න.
	·
	······································
2	
	$(\rho, \rho)^2$ $\pi, \pi, \overline{3}$
	$-\pi < \theta \le \pi$ සඳහා $\left(\cos\frac{\theta}{2} + \sin\frac{\theta}{2}\right) = 1 + \sin\theta$ බව පෙන්වන්න. ඒ නයින්, $\cos\frac{\theta}{12} + \sin\frac{\theta}{12} = \sqrt{\frac{\theta}{2}}$ බ පෙන්වා $\cos\frac{\pi}{12} - \sin\frac{\pi}{12}$ හි අගය ද සොයන්න. $\sin\frac{\pi}{12} = \frac{\sqrt{3}-1}{2\sqrt{2}}$ බව අපෝහනය කරන්න.
	$-\pi < \theta \le \pi$ සඳහා $\left(\cos\frac{\theta}{2} + \sin\frac{\theta}{2}\right) = 1 + \sin\theta$ බව පෙත්වන්න. ඒ නයින්, $\cos\frac{\theta}{12} + \sin\frac{\theta}{12} = \sqrt{\frac{2}{2}}$ බ පෙත්වා $\cos\frac{\pi}{12} - \sin\frac{\pi}{12}$ හි අගය ද සොයන්න. $\sin\frac{\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$ බව අපෝහනය කරන්න.
	$-\pi < \theta \le \pi$ සඳහා $\left(\cos\frac{\theta}{2} + \sin\frac{\theta}{2}\right) = 1 + \sin\theta$ බව පෙත්වන්න. ඒ නයින්, $\cos\frac{\theta}{12} + \sin\frac{\theta}{12} = \sqrt{\frac{2}{2}}$ බ පෙත්වා $\cos\frac{\pi}{12} - \sin\frac{\pi}{12}$ හි අගය ද සොයන්න. $\sin\frac{\pi}{12} = \frac{\sqrt{3}-1}{2\sqrt{2}}$ බව අපෝහනය කරන්න.
	$-\pi < \theta \le \pi$ සඳහා $\left(\cos\frac{\sigma}{2} + \sin\frac{\sigma}{2}\right) = 1 + \sin\theta$ බව පෙත්වන්න. ඒ නයින්, $\cos\frac{\pi}{12} + \sin\frac{\pi}{12} = \sqrt{\frac{\sigma}{2}}$ බ පෙත්වා $\cos\frac{\pi}{12} - \sin\frac{\pi}{12}$ හි අගය ද සොයන්න. $\sin\frac{\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$ බව අපෝහනය කරන්න.
	$-\pi < \theta \le \pi$ සඳහා $\left(\cos\frac{\sigma}{2} + \sin\frac{\sigma}{2}\right) = 1 + \sin\theta$ බව පෙත්වන්න. ඒ නයින්, $\cos\frac{\pi}{12} + \sin\frac{\pi}{12} = \sqrt{\frac{\sigma}{2}}$ බ පෙත්වා $\cos\frac{\pi}{12} - \sin\frac{\pi}{12}$ හි අගය ද සොයන්න. $\sin\frac{\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$ බව අපෝහනය කරත්න.
	$-\pi < \theta \le \pi$ සඳහා $\left(\cos\frac{\theta}{2} + \sin\frac{\theta}{2}\right) = 1 + \sin\theta$ බව පෙන්වන්න. ඒ නයින්, $\cos\frac{\theta}{12} + \sin\frac{\theta}{12} = \sqrt{\frac{\theta}{2}}$ බ පෙන්වා $\cos\frac{\pi}{12} - \sin\frac{\pi}{12}$ හි අගය ද සොයන්න. $\sin\frac{\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$ බව අපෝහනය කරන්න.
	$-\pi < \theta \le \pi$ සඳහා $\left(\cos\frac{\theta}{2} + \sin\frac{\theta}{2}\right) = 1 + \sin\theta$ බව පෙන්වන්න. ඒ නයින්, $\cos\frac{\theta}{12} + \sin\frac{\theta}{12} = \sqrt{\frac{2}{2}}$ බ පෙන්වා $\cos\frac{\pi}{12} - \sin\frac{\pi}{12}$ හි අගය ද සොයන්න. $\sin\frac{\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$ බව අපෝහනය කරන්න.
	$-\pi < \theta \le \pi$ සඳහා $\left(\cos\frac{\sigma}{2} + \sin\frac{\sigma}{2}\right) = 1 + \sin\theta$ බව පෙන්වන්න. ඒ නයින්, $\cos\frac{\pi}{12} + \sin\frac{\pi}{12} = \sqrt{\frac{\sigma}{2}}$ බ පෙන්වා $\cos\frac{\pi}{12} - \sin\frac{\pi}{12}$ හි අගය ද සොයන්න. $\sin\frac{\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$ බව අපෝහනය කරන්න.
	$-\pi < \theta \le \pi$ සඳහා $\left(\cos\frac{\sigma}{2} + \sin\frac{\sigma}{2}\right) = 1 + \sin\theta$ බව පෙන්වන්න. ඒ නයින්, $\cos\frac{\pi}{12} + \sin\frac{\pi}{12} = \sqrt{\frac{\sigma}{2}}$ බ පෙන්වා $\cos\frac{\pi}{12} - \sin\frac{\pi}{12}$ හි අගය ද සොයන්න. $\sin\frac{\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$ බව අපෝහනය කරන්න.
	$-\pi < \theta \le \pi$ සඳහා $\left(\cos\frac{\theta}{2} + \sin\frac{\theta}{2}\right) = 1 + \sin\theta$ බව පෙන්වන්න. ඒ නයින්, $\cos\frac{\theta}{12} + \sin\frac{\theta}{12} = \sqrt{\frac{2}{2}}$ බ පෙන්වා $\cos\frac{\pi}{12} - \sin\frac{\pi}{12}$ හි අගය ද සොයන්න. $\sin\frac{\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$ බව අපෝහනය කරන්න.
	$-\pi < \theta \le \pi \ \exp(\cos\frac{\theta}{2} + \sin\frac{\theta}{2}) = 1 + \sin\theta \text{ab eessibals} \mathbf{f} \ \mathbf{a} \mathbf{a} \mathbf{a} \mathbf{a}, \ \cos\frac{\pi}{12} + \sin\frac{\pi}{12} = \sqrt{\frac{2}{2}} \text{a}$ eessible $\cos\frac{\pi}{12} - \sin\frac{\pi}{12}$ හි අගය ද සොයන්න. $\sin\frac{\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$ බව අපෝහනය කරන්න.
	$-\pi < \theta \le \pi$ සඳහා $\left(\cos\frac{\theta}{2} + \sin\frac{\theta}{2}\right) = 1 + \sin\theta$ බව පෙන්වන්න. ඒ නයින්, $\cos\frac{\pi}{12} + \sin\frac{\pi}{12} = \sqrt{\frac{2}{2}}$ බ පෙන්වා $\cos\frac{\pi}{12} - \sin\frac{\pi}{12}$ හි අගය ද සොයන්න. $\sin\frac{\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$ බව අපෝහනය කරන්න.
	$-\pi < \theta \le \pi \operatorname{treps}\left(\cos\frac{\varphi}{2} + \sin\frac{\varphi}{2}\right) = 1 + \sin\theta \text{ab evaluation} \mathbf{f} \text{ adds}, \cos\frac{\pi}{12} + \sin\frac{\pi}{12} = \sqrt{\frac{\varphi}{2}} \text{ac}$ evaluation $\cos\frac{\pi}{12} - \sin\frac{\pi}{12} \text{ac} \varphi \text{ evaluation} \sin\frac{\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}} \text{ac} \varphi \text{ evaluation} \mathbf{ac} \text{ adds}.$
	$-\pi < \theta \le \pi$ සඳහා $\left(\cos \frac{\theta}{2} + \sin \frac{\theta}{2}\right) = 1 + \sin \theta$ බව පෙන්වන්න. ඒ නයින්, $\cos \frac{\pi}{12} + \sin \frac{\pi}{12} = \sqrt{\frac{\theta}{2}}$ බ පෙන්වා $\cos \frac{\pi}{12} - \sin \frac{\pi}{12}$ හි අගය ද සොයන්න. $\sin \frac{\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$ බව අපෝහනය කරන්න.
	$-\pi < \theta \le \pi$ සඳහා $\left(\cos\frac{\sigma}{2} + \sin\frac{\sigma}{2}\right) = 1 + \sin\theta$ බව පෙන්වන්න. 5 නයික් , $\cos\frac{\pi}{12} + \sin\frac{\pi}{12} = \sqrt{\frac{2}{2}}$ බ පෙන්වා $\cos\frac{\pi}{12} - \sin\frac{\pi}{12}$ හි අගය ද සොයන්න. $\sin\frac{\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$ බව අපෝහනය කරන්න.
	$-\pi < \theta \le \pi$ සඳහා $\left(\cos \frac{\sigma}{2} + \sin \frac{\sigma}{2}\right) = 1 + \sin \theta$ බව පෙන්වන්න. ඒ නයින්, $\cos \frac{\pi}{12} + \sin \frac{\pi}{12} = \sqrt{\frac{\sigma}{2}}$ බ පෙන්වා $\cos \frac{\pi}{12} - \sin \frac{\pi}{12}$ හි අගය ද සොයන්න. $\sin \frac{\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$ බව අපෝහනය කරන්න.
	$-\pi < \theta \le \pi$ జళ్యం $\left(\cos\frac{\theta}{2} + \sin\frac{\theta}{2}\right)^2 = 1 + \sin\theta$ බల ఆలులిను. ర విడి , $\cos\frac{\pi}{12} + \sin\frac{\pi}{12} = \sqrt{\frac{3}{2}}$ බ ఆలులిలు $\cos\frac{\pi}{12} - \sin\frac{\pi}{12}$ හි අගద ç జుబడును. $\sin\frac{\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$ බව අలులిలు దారును.

**

[ගත්වැනි පිටුව බලන්න.

AL/2017/10/S-I	- 7 -		40449
பெழு பிருந்து குறைக்கு குறைக்		பாது தாட்டியாகு கோடுக்களம் இலங்க	கு கூல மலக் கோலக்களம் கப்பரீட்சைத் திணைக்களம்
கல்விப் பொத General Certific	து வகைய பகு (டூயை கே பத் தராதரப் பத்திர (உயர் cate of Education (Adv. Lev	கர)ப் பரீட்சை, 2017 ஒ	கஸ்ந்
கேංයුක්ත ගණීතය இணைந்த கணிதம் Combined Mathematics			
	B කොටස		
* පුශ්න පහකට පමණ	ණක් පිළිතුරු සපයන්න.		
11. (a) $f(x) = 3x^2 + 2ax + b \omega_0$	ැයි ගනිමු; මෙහි a, b ∈ ℝ වේ.	×	
f(x)=0 සමීකරණයට ස	තාත්ත්වික පුහින්න මූල දෙකක	් තිබෙන බව දී ඇත. a^2	> 3b බව පෙත්වන්න.
f(x) = 0 හි මූල $lpha$ හා eta	යැයි ගනිමු. α ඇසුරෙන් α +	eta ද b ඇසුරෙන් $aeta$ ද ලි	යා දක්වන්න.
$\left \alpha-\beta\right =\frac{2}{3}\sqrt{a^2-3b}$	බව පෙත්වත්ත.		
lpha+eta හා $ lpha-eta $ ස්වස්	කීය මූල ලෙස ඇති වර්ගජ ස	මීකරණය	
$9x^2 - 6\Big(a + \sqrt{a^2 - 3b}\Big)$	$\int x + 4\sqrt{a^4 - 3a^2b} = 0 \text{OSz}$	් දෙනු ලබන බව තවදුර	ටත් පෙන්වන්න.
	යැයි ගනිමු; මෙහි p,q∈ℝ ය g(x) බෙදූ විට ශේෂය 5 බව		
p හා q හි අගයන් සොය	ා (x+1) යන්න g(x) හි සාධක	ායක් බව පෙන්වන්න.	
12. (a) x හි ආරෝහණ බල වලි	න් (5 + 2x) ¹⁴ හි ද්විපද පුසාර	ණය ලියා දක්වත්ත.	s:
r = 0, 1, 2,, 14 සඳහා	ඉහත පුසාරණයේ x' අඩංගු ප	පදය T _r යැයි ගනිමු.	15
$x \neq 0$ සඳහා $\frac{T_{r+1}}{T_r} = \frac{2(1)}{50}$	<u>14 – r)</u> x බව පෙත්වත්ත. (r + 1)		* *
ඒ නයින් , <i>x</i> = <mark>4</mark> වන විට), ඉහත පුසාරණයෙහි විශාලත	ාම පදය ලබාදෙන r හි අ	ගය සොයන්න.
(b) c ≥ 0 යැයි ගනිමු. r ∈ Z	$+ \exp(2) \frac{2}{(r+c)(r+c+2)} = \frac{2}{(r+c)(r+c+2)}$	$\frac{1}{(r+c)} - \frac{1}{(r+c+2)}$ බව	පෙන්වත්ත.
/-	$\sum_{r=1}^{n} \frac{2}{(r+c)(r+c+2)} = \frac{(3+c)}{(1+c)}$	$\frac{2c}{(2+c)} = \frac{1}{(n+c+1)} = \frac{1}{(n+c+1)}$	<u>1</u> n+c+2) බව
පෙන්වත්ත.			
$\sum_{r=1}^{\infty} \frac{2}{(r+c)(r+c+2)} \phi$	පරිමිත ලේණිය අභිසාරී බව අ	පෝහනය කර එහි ඓක	ාපය සොයන්න.
c සඳහා සුදුසු අගයන් සර පෙන්වන්න.	හිත ව`මෙම ඓකාඃය භාවිතගෙ	ost, $\sum_{r=1}^{\infty} \frac{1}{r(r+2)} = \frac{1}{3} + \frac{1}{3}$	$\sum_{r=1}^{\infty} \frac{1}{(r+1)(r+3)} \exists \mathfrak{D}$

[අවවැනි පිටුව බලන්න,

13. (a) $\mathbf{A} = \begin{pmatrix} 2 & a & 3 \\ -1 & b & 2 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 & -1 & a \\ 1 & b & 0 \end{pmatrix}$ හා $\mathbf{P} = \begin{pmatrix} 4 & 1 \\ 2 & 0 \end{pmatrix}$ යැයි ගනිමු; මෙහි $a, b \in \mathbb{R}$ වේ. $\mathbf{A}\mathbf{B}^{\mathrm{T}} = \mathbf{P}$ බව දී ඇත; මෙහි \mathbf{B}^{T} මගින් \mathbf{B} නාහසයෙහි පෙරළුම දැක්වේ. a = 1 හා b = -1 බව පෙන්වා, a හා b සඳහා මෙම අගයන් සහිත ව $\mathbf{B}^{\mathsf{T}}\mathbf{A}$ සොයන්න. ${f P}^{-1}$ ලියා දක්වා, එය භාවිතයෙන්, ${f PQ}={f P}^2+2{f I}$ වන පරිදි ${f Q}$ නාහාසය සොයන්න; මෙහි ${f I}$ යනු ගණය 2 වූ ඒකක නාහසයයි. (b) ආගන්ඩ් සටහනක, |z|=1 සපුරාලන z සංකීර්ණ සංඛාහ නිරූපණය කරන ලක්ෂායන්හි පථය වූ C හි දළ සටහනක් අඳින්න. $z_0 = a (\cos \theta + i \sin \theta)$ යැයි ගනිමු; මෙහි a > 0 හා $0 < \theta < \frac{\pi}{2}$ වේ. $\frac{1}{z_0}$ හා z_0^2 යන සංකීර්ණ සංඛාා එක එකක මාපාංකය a ඇසුරෙන් ද පුධාන විස්තාරය heta ඇසුරෙන් ද සොයන්න. P,Q,R හා S යනු පිළිවෙළින් $z_0, rac{1}{z_0}, z_0+rac{1}{z_0}$ හා z_0^2 යන සංකීර්ණ සංඛාා ඉහත ආගන්ඩ් සටහනෙහි නිරූපණය කරන ලක්ෂා යැයි ගනිමු. P ලක්ෂාය ඉහත C මත පිහිටන විට (i) Q හා S ලක්ෂා ද C මත පිහිටන බවත් (ii) R ලක්ෂාය තාත්ත්වික අක්ෂය මත 0 හා 2 අතර පිහිටන බවත් පෙත්වත්ත. 14. (a) $x \neq 1, 2$ සඳහා $f(x) = \frac{x^2}{(x-1)(x-2)}$ යැයි ගනිමු. $x \neq 1, 2$ සඳහා f(x)හි වසුත්පන්නය, f'(x) යන්න $f'(x) = \frac{x(4-3x)}{(x-1)^2(x-2)^2}$ මගින් දෙනු ලබන බව පෙන්වන්න. ස්පර්ශෝන්මුඛ හා හැරුම් ලක්ෂා දක්වමින් y=f(x) හි පුස්තාරයේ දළ සටහනක් අඳින්න. පුස්තාරය භාවිතයෙන් $\frac{x^2}{(x-1)(x-2)} \le 0$ අසමානතාව විසඳන්න. (b) යාබද රූපයේ පෙත්වා ඇති අඳුරු කළ පෙදෙසෙහි D වර්ගඵලය 385 m² වේ. මෙම පෙදෙස ලබාගෙන ඇත්තේ දිග මීටර 5x ද පළල මීටර 3y ද වූ ABCD ඍජුකෝණාසුයකින්, දිග මීටර y ද පළල මීටර x ද වූ සර්වසම ඍජුකෝණාසු හතරක් ඉවත් කිරීමෙනි. $y = \frac{35}{x}$ බව පෙන්වා, අඳුරු කළ පෙදෙසෙහි මීටරවලින් මනින ලද පරිමිතිය P යන්න x > 0 සඳහා $P = 14x + \frac{350}{x}$ මගින් දෙනු ලබන බව පෙත්වත්ත. P අවම වන පරිදි x හි අගය සොයන්න.

[නවවැනි පිටුව බලන්න.

AL/2017/10/S-I

15. (a) (i) $\frac{1}{x(x+1)^2}$ හින්න භාග ඇසුරෙන් පුකාශ කර, **ඒ නයින්**, $\int \frac{1}{x(x+1)^2} dx$ සොයන්න. (ii) කොටස් වශයෙන් අනුකලනය භාවිතයෙන්, $\int xe^{-x} \mathrm{d}x$ සොයා, ඒ නයින්, $y = xe^{-x}$ වකුයෙන් ද x = 1, x = 2 හා y = 0 සරල රේඛාවලින් ද ආවෘත පෙදෙසෙහි වර්ගඵලය සොයන්න. $(b) \ c > 0$ හා $I = \int \frac{\ln (c + x)}{c^2 + x^2} dx$ යැයි ගනිමු. $x = c \tan \theta$ ආදේශය භාවිතයෙන්, $I = \frac{\pi}{4c} \ln c + \frac{1}{c} J$ බව පෙන්වන්න; මෙහි $J = \int_{-\infty}^{4} \ln (1 + \tan \theta) \, d\theta$ වේ. a නියතයක් වන $\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(a-x) dx$ සූතුය භාවිතයෙන්, $J = \frac{\pi}{8} \ln 2$ බව පෙන්වන්න. $I = \frac{\pi}{8c} \ln(2c^2)$ බව අපෝහනය කරන්න. $16. m \in \mathbb{R}$ යැයි ගනිමු. $P \equiv (0,1)$ ලක්ෂාය y = mx මගින් දෙනු ලබන l සරල රේඛාව මත නොපිහිටන බව පෙත්වත්ත. l ට ලම්බව P හරහා වූ සරල රේඛාව මත ඕනෑම ලක්ෂායක ඛණ්ඩාංක (–mt, t+1) ආකාරයෙන් ලිවිය හැකි බව පෙන්වන්න; මෙහි t යනු පරාමිතියකි. ඒ නයින්, P සිට l ට ඇඳි ලම්බයේ අඩිය වූ Q ලක්ෂායෙහි ඛණ්ඩාංක $\left(rac{m}{1+m^2},rac{m^2}{1+m^2}
ight)$ මගින් දෙනු ලබන බව පෙත්වත්ත. m විචලනය වන විට, Q ලක්ෂාය $x^2 + y^2 - y = 0$ මගින් දෙනු ලබන S වෘත්තය මත පිහිටන බව පෙන්වා, Q හි පථයේ දළ සටහනක් xy-තලයෙහි අඳින්න. තව ද $R \equiv \left(\frac{\sqrt{3}}{4}, \frac{1}{4}\right)$ ලක්ෂාය S මත පිහිටන බව පෙන්වන්න. R ලක්ෂායේ දී S බාහිරව ස්පර්ශ කරන හා x-අක්ෂය මත කේන්දුය පිහිටන S' වෘත්තයේ සමීකරණය සොයන්න. S^\prime හි කේන්දුයම කේන්දුය ලෙස ඇතිව S අභාාන්තරව ස්පර්ශ කරන වෘත්තයේ සමීකරණය ලියා දක්වන්න. 17. (a) (i) $0^{\circ} < \theta < 90^{\circ}$ සඳහා $\frac{2\cos(60^{\circ} - \theta) - \cos\theta}{\sin\theta} = \sqrt{3}$ බව පෙන්වන්න. (ii) රූපයේ පෙන්වා ඇති ABCD චතුරසුයෙහි AB = AD, $A\hat{B}C = 80^\circ$, $C\hat{A}D = 20^\circ$ හා $B\hat{A}C = 60^\circ$ වේ. $A\hat{C}D$ = lpha යැයි ගනිමු. ABC සිකෝණය සඳහා සයින් නීතිය භාවිතයෙන්, $rac{AC}{AB}$ = $2\cos 40^\circ$ බව පෙත්වත්ත. මීළඟට ADC තිකෝණය සඳහා සයින් නීතිය භාවිතයෙන්, $\frac{AC}{AD} = \frac{\sin(20^\circ + \alpha)}{\sin \alpha}$ බව පෙත්වන්න. $\sin (20^\circ + \alpha) = 2 \cos 40^\circ \sin \alpha$ බව අපෝහනය කරන්න. ඒ නයින්, $\cot \alpha = \frac{2\cos 40^\circ - \cos 20^\circ}{\sin 20^\circ}$ බව පෙන්වන්න. 80% 60° දැන්, ඉහත (i) හි පුතිඵලය භාවිතයෙන්, $\alpha = 30^\circ$ බව පෙන්වන්න. (b) $\cos 4x + \sin 4x = \cos 2x + \sin 2x$ සමීකරණය විසඳන්න.

Visit Online Panthiya YouTube channel to watch Combined Maths and Chemistry Videos

