සියලු ම හිමිකම් ඇවිරිණි/(ආශුර பුනිර්பුලිකාරාධනා/All Rights Reserved)

ලි ලංකා විතාහ දෙපාර්තමේන්තුව ලී ලංකා විතාශ දෙපාර්ප**ල් පළමුණු කළුදුවාතු යුදුවල් පාර්තමේන්තුව ලී** ලංකා විතාශ දෙපාර්තමේන්තුව இහස්කෙයට පාර්යිකදේ එකානැත්තසාර මුහස්කයට පාදේ කිලාක්ෂියදුවාට මුහස්කයට පාර්යිකදේ ප්රධානය මුහස්කයට පාර්යිකදේ එකානැත්සසාර Department of Examinations, Sri Lanka Department of **මුත්ත්රිකයට Sri Lanka Department of Examinations, Sri Lanka** ලී ලංකා විතාශ දෙපාර්තමේන්තුව මුනස්කයට පාර්යිකදේ නිකනැත්සෙර මුහස්කයට පාර්යික්ති මුත්තම්න්තුව ලී ලංකා විතාශ දෙපාර්තමේන්තුව ලී ලංකා විතාශ දෙපාර්තමේන්තුව

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2017 අගෝස්තු கல்விட் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2017 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2017

க**் යුක්ත ගණිතය** II இணைந்த கணிதம் II Combined Mathematics II

පැය තුනයි மூன்று மணித்தியாலம் Three hours

විභාග අංකය

උපදෙස් :

🗱 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා ඓ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු **A කොටසෙහි** පිළිතුරු පනුය, **B කොටසෙහි** පිළිතුරු පනුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- 🗱 පුශ්න පනුයෙහි B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.
- * මෙම පුශ්න පනුයෙහි g මගින් ගුරුක්වජ ත්වරණය දැක්වෙයි.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

කොටස	පුශ්න අංකය	ලකුණු
	1	
A	2	
	3	
	4	
	5	
	6	
	7	
	8	
	9	
	10	
	11	
	12	
В	13	
	14	
	15	
	16	
	17	
	එකතුව	
	පුතිශතය	- 20

I පතුය	10 VII C 10 VII C
II පනුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

ඉලක්කමෙන්	
අකුරෙන්	

සංකේත අංක

උත්තර පතු පරීක්	ෂක	
පරීක්ෂා කළේ:	2	
අධීක්ෂණය කළේ	:	

A කොටස

1.	ස්කන්ධය m වූ P අංශුවක් හා ස්කන්ධය λm වූ Q අංශුවක් පිළිවෙළින් u හා v වේගවලින් එකිනෙක දෙසට, සුමට තිරස් ගෙබිමක් මත වූ එක ම සරල රේඛාවක් දිගේ චලනය වේ. ඒවායේ ගැටුමෙන් පසු, P අංශුව v වේගයෙන් හා Q අංශුව u වේගයෙන් පුතිවිරුද්ධ දිශාවලට චලනය වේ. $\lambda = 1$ බව පෙන්වා, P හා Q අතර පුතාහාගති සංගුණකය සොයන්න.
	5.1
2.	කුඩා ඒකාකාර බෝලයක් රැගත් බැලුනයක් කාලය $t\!=\!0$ දී පොළොව මත ලක්ෂායකින් නිශ්චලතාවයෙන්
2.	කුඩා ඒකාකාර බෝලයක් රැගත් බැලුනයක් කාලය $t=0$ දී පොළොව මත ලක්ෂායකින් තිශ්චලතාවයෙන් ආරම්භ කර ඒකාකාර f ත්වරණයකින් සිරස් ව ඉහළට චලනය වේ; මෙහි $f < g$ වේ. කාලය $t=T$ හි දී බෝලය, බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t=0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අඳින්න. T , f හා g
2.	කුඩා ඒකාකාර බෝලයක් රැගත් බැලුනයක් කාලය $t\!=\!0$ දී පොළොව මත ලක්ෂායකින් තිශ්චලතාවයෙන් ආරම්භ කර ඒකාකාර f ත්වරණයකින් සිරස් ව ඉහළට චලනය වේ; මෙහි $f\!<\!g$ වේ. කාලය $t\!=\!T$ හි දී බෝලය, බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t\!=\!0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අදින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
2.	කුඩා ඒකාකාර බෝලයක් රැගත් බැලුනයක් කාලය $t=0$ දී පොළොව මත ලක්ෂායකින් තිශ්චලතාවයෙන් ආරම්භ කර ඒකාකාර f ත්වරණයකින් සිරස් ව ඉහළට චලනය වේ; මෙහි $f < g$ වේ. කාලය $t=T$ හි දී බෝලය, බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t=0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අඳින්න. T , f හා g
2.	කුඩා ඒකාකාර බෝලයක් රැගත් බැලුනයක් කාලය $t\!=\!0$ දී පොළොව මත ලක්ෂායකින් තිශ්චලතාවයෙන් ආරම්භ කර ඒකාකාර f ත්වරණයකින් සිරස් ව ඉහළට චලනය වේ; මෙහි $f\!<\!g$ වේ. කාලය $t\!=\!T$ හි දී බෝලය, බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t\!=\!0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අදින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
2.	කුඩා ඒකාකාර බෝලයක් රැගත් බැලුනයක් කාලය $t\!=\!0$ දී පොළොව මත ලක්ෂායකින් තිශ්චලතාවයෙන් ආරම්භ කර ඒකාකාර f ත්වරණයකින් සිරස් ව ඉහළට චලනය වේ; මෙහි $f\!<\!g$ වේ. කාලය $t\!=\!T$ හි දී බෝලය, බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t\!=\!0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අදින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
2.	කුඩා ඒකාකාර බෝලයක් රැගත් බැලුනයක් කාලය $t\!=\!0$ දී පොළොව මත ලක්ෂායකින් තිශ්චලතාවයෙන් ආරම්භ කර ඒකාකාර f ත්වරණයකින් සිරස් ව ඉහළට චලනය වේ; මෙහි $f\!<\!g$ වේ. කාලය $t\!=\!T$ හි දී බෝලය, බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t\!=\!0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අදින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
2.	කුඩා ඒකාකාර බෝලයක් රැගත් බැලුනයක් කාලය $t\!=\!0$ දී පොළොව මත ලක්ෂායකින් තිශ්චලතාවයෙන් ආරම්භ කර ඒකාකාර f ත්වරණයකින් සිරස් ව ඉහළට චලනය වේ; මෙහි $f\!<\!g$ වේ. කාලය $t\!=\!T$ හි දී බෝලය, බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t\!=\!0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අදින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
2.	කුඩා ඒකාකාර බෝලයක් රැගත් බැලුනයක් කාලය $t\!=\!0$ දී පොළොව මත ලක්ෂායකින් තිශ්චලතාවයෙන් ආරම්භ කර ඒකාකාර f ත්වරණයකින් සිරස් ව ඉහළට චලනය වේ; මෙහි $f\!<\!g$ වේ. කාලය $t\!=\!T$ හි දී බෝලය, බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t\!=\!0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අදින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
2.	කුඩා ඒකාකාර බෝලයක් රැගත් බැලුනයක් කාලය $t\!=\!0$ දී පොළොව මත ලක්ෂායකින් තිශ්චලතාවයෙන් ආරම්භ කර ඒකාකාර f ත්වරණයකින් සිරස් ව ඉහළට චලනය වේ; මෙහි $f\!<\!g$ වේ. කාලය $t\!=\!T$ හි දී බෝලය, බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t\!=\!0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අදින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
2.	කුඩා ඒකාකාර බෝලයක් රැගත් බැලුනයක් කාලය $t\!=\!0$ දී පොළොව මත ලක්ෂායකින් තිශ්චලතාවයෙන් ආරම්භ කර ඒකාකාර f ත්වරණයකින් සිරස් ව ඉහළට චලනය වේ; මෙහි $f\!<\!g$ වේ. කාලය $t\!=\!T$ හි දී බෝලය, බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t\!=\!0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අදින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
2.	කුඩා ඒකාකාර බෝලයක් රැගත් බැලුනයක් කාලය $t\!=\!0$ දී පොළොව මත ලක්ෂායකින් තිශ්චලතාවයෙන් ආරම්භ කර ඒකාකාර f ත්වරණයකින් සිරස් ව ඉහළට චලනය වේ; මෙහි $f\!<\!g$ වේ. කාලය $t\!=\!T$ හි දී බෝලය, බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t\!=\!0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අදින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
2.	කුඩා ඒකාකාර බෝලයක් රැගත් බැලුනයක් කාලය $t\!=\!0$ දී පොළොව මත ලක්ෂායකින් තිශ්චලතාවයෙන් ආරම්භ කර ඒකාකාර f ත්වරණයකින් සිරස් ව ඉහළට චලනය වේ; මෙහි $f\!<\!g$ වේ. කාලය $t\!=\!T$ හි දී බෝලය, බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t\!=\!0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අදින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
2.	කුඩා ඒකාකාර බෝලයක් රැගත් බැලුනයක් කාලය $t\!=\!0$ දී පොළොව මත ලක්ෂායකින් තිශ්චලතාවයෙන් ආරම්භ කර ඒකාකාර f ත්වරණයකින් සිරස් ව ඉහළට චලනය වේ; මෙහි $f\!<\!g$ වේ. කාලය $t\!=\!T$ හි දී බෝලය, බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t\!=\!0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අදින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
2.	කුඩා ඒකාකාර බෝලයක් රැගත් බැලුනයක් කාලය $t\!=\!0$ දී පොළොව මත ලක්ෂායකින් තිශ්චලතාවයෙන් ආරම්භ කර ඒකාකාර f ත්වරණයකින් සිරස් ව ඉහළට චලනය වේ; මෙහි $f\!<\!g$ වේ. කාලය $t\!=\!T$ හි දී බෝලය, බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t\!=\!0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අදින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
2.	කුඩා ඒකාකාර බෝලයක් රැගත් බැලුනයක් කාලය $t\!=\!0$ දී පොළොව මත ලක්ෂායකින් තිශ්චලතාවයෙන් ආරම්භ කර ඒකාකාර f ත්වරණයකින් සිරස් ව ඉහළට චලනය වේ; මෙහි $f\!<\!g$ වේ. කාලය $t\!=\!T$ හි දී බෝලය, බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t\!=\!0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අදින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
2.	කුඩා ඒකාකාර බෝලයක් රැගත් බැලුනයක් කාලය $t\!=\!0$ දී පොළොව මත ලක්ෂායකින් තිශ්චලතාවයෙන් ආරම්භ කර ඒකාකාර f ත්වරණයකින් සිරස් ව ඉහළට චලනය වේ; මෙහි $f\!<\!g$ වේ. කාලය $t\!=\!T$ හි දී බෝලය, බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t\!=\!0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අදින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
2.	කුඩා ඒකාකාර බෝලයක් රැගත් බැලුනයක් කාලය $t\!=\!0$ දී පොළොව මත ලක්ෂායකින් තිශ්චලතාවයෙන් ආරම්භ කර ඒකාකාර f ත්වරණයකින් සිරස් ව ඉහළට චලනය වේ; මෙහි $f\!<\!g$ වේ. කාලය $t\!=\!T$ හි දී බෝලය, බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t\!=\!0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අදින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.

3.	රූපයේ <i>PABCD</i> යනු තිරසට 30° කින් ආනත අචල සුමට තලයක් මත තබා	1111111111
	ඇති ස්කන්ධය m වූ අංශුවකට ඈඳා ඇති සැහැල්ලු අවිතනා තන්තුවකි.	D .
	තන්තුව, A හි වූ අවල කුඩා සුමට කප්පියක් මතින් ද ස්කන්ධය $2m$ වූ සුමට	
	කප්පියක් යටින් ද යයි. D ලක්ෂාය අචල වේ. PA, උපරිම බෑවුම් රේබාවක්	
	දිගේ වන අතර AB හා CD සිරස් වේ. තන්තුව තදව ඇතිව පද්ධතිය	â
	නිශ්චලතාවයේ සිට මුදාහරිනු ලැබේ. අංශුවේ ත්වරණයෙහි විශාලත්වය	
	සචල කප්පියේ ත්වරණයෙහි විශාලත්වය මෙන් දෙගුණයක් බව පෙන්වා,	$B \cap C$
	තන්තුවේ ආතතිය නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලියා දක්වත්න. 🔟 🗥 🕏	Ψ
		₹ 2 mg
		**
		,
	······	
	••••••	
4.	ස්කන්ධය $M \log වූ ටුක් රථයක් ස්කන්ධය m \log 2ූ කාරයක් සෘජු තිරස් පාරක් දිගේ ඇදගෙ$	ාන යනු ලබන්නේ
	ටුක් රථයේ හා කාරයේ චලිත දිශාවට සමාන්තර වූ සැහැල්ලු අවිතනා කේබලයක් ආධාර	
	හා කාරයේ චලිතයට පුතිරෝධ පිළිවෙළින් නිව්ටන λM හා නිව්ටන λm වේ; මෙහි λ (>0)	
	මොහොතක දී ටුක් රථයේ එන්ජිමෙන් ජනනය කරනු ලබන ජවය $P { m kW}$ වන අතර ටුක් රථ	
	වේගය v m s $^{-1}$ වේ. එම මොහොතේ දී කේබලයේ ආකතිය නිව්ටන $\frac{1000mP}{(M+m)v}$ බව පෙ	ත්වත්ත.
	*	

5.	සුපුරුදු අංකනයෙන්, $-\mathbf{i}+2\mathbf{j}$ හා $2lpha\mathbf{i}+lpha\mathbf{j}$ යනු පිළිවෙළින් O අවල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂා
	දෙකක පිහිටුම් දෛශික යැයි ගනිමු; මෙහි $\alpha(>0)$ නියතයකි. අදිශ ගුණිකය භාවිතයෙන්, $\hat{AOB} = \frac{\pi}{2}$ බව පෙන්වන්න.
	C යනු $OACB$ සෘජුකෝණාසුයක් වන පරිදි වූ ලක්ෂාය යැයි ගනිමු. \overrightarrow{OC} ලෙදශිකය y -අක්ෂය දිගේ පිහිටයි නම්,
	α හි අගය සොයන්න.
6.	OA හා OB සැහැල්ලු අවිතනා තන්තු දෙකක් මගින් O අචල ලක්ෂායකින් එල්ලන ලද දිග $2a$ හා බර W වූ AB ඒකාකාර දණ්ඩක් රූපයේ දැක්වෙන පරිදි සමතුලිතතාවයේ B
6.	දිග $2a$ හා බර W වූ AB ඒකාකාර දණ්ඩක් රූපයේ දැක්වෙන පරිදි සමතුලිතතාවයේ පවතී. G යනු AB හි මධා ලක්ෂාය වේ. $A\hat{O}B=\frac{\pi}{2}$ හා $O\hat{A}B=\alpha$ බව දී ඇත.
6.	දිග $2a$ හා බර W වූ AB ඒකාකාර දණ්ඩක් රූපයේ දැක්වෙන පරිදි සමතුලිතතාවයේ \nearrow B
6.	දිග $2a$ හා බර W වූ AB ඒකාකාර දණ්ඩක් රූපයේ දැක්වෙන පරිදි සමතුලිතතාවයේ පවතී. G යනු AB හි මධා ලක්ෂාය වේ. $A\hat{O}B=\frac{\pi}{2}$ හා $O\hat{A}B=\alpha$ බව දී ඇත.
6.	දිග $2a$ හා බර W වූ AB ඒකාකාර දණ්ඩක් රූපයේ දැක්වෙන පරිදි සමතුලිතතාවයේ පවතී. G යනු AB හි මධා ලක්ෂාය වේ. $A\hat{O}B=\frac{\pi}{2}$ හා $O\hat{A}B=\alpha$ බව දී ඇත.
6.	දිග $2a$ හා බර W වූ AB ඒකාකාර දණ්ඩක් රූපයේ දැක්වෙන පරිදි සමතුලිතතාවයේ පවතී. G යනු AB හි මධා ලක්ෂාය වේ. $A\hat{O}B=\frac{\pi}{2}$ හා $O\hat{A}B=\alpha$ බව දී ඇත.
6.	දිග $2a$ හා බර W වූ AB ඒකාකාර දණ්ඩක් රූපයේ දැක්වෙන පරිදි සමතුලිතතාවයේ පවතී. G යනු AB හි මධා ලක්ෂාය වේ. $A\hat{O}B=\frac{\pi}{2}$ හා $O\hat{A}B=\alpha$ බව දී ඇත. $A\hat{O}G=\alpha$ බව පෙන්වා, තන්තු දෙකෙහි ආතති සොයන්න.
6.	දිග $2a$ හා බර W වූ AB ඒකාකාර දණ්ඩක් රූපයේ දැක්වෙන පරිදි සමතුලිතතාවයේ පවතී. G යනු AB හි මධා ලක්ෂාය වේ. $A\hat{O}B=\frac{\pi}{2}$ හා $O\hat{A}B=\alpha$ බව දී ඇත. $A\hat{O}G=\alpha$ බව පෙන්වා, තන්තු දෙකෙහි ආතති සොයන්න.
6.	දිග $2a$ හා බර W වූ AB ඒකාකාර දණ්ඩක් රූපයේ දැක්වෙන පරිදි සමතුලිතතාවයේ පවතී. G යනු AB හි මධා ලක්ෂාය වේ. $A\hat{O}B=\frac{\pi}{2}$ හා $O\hat{A}B=\alpha$ බව දී ඇත. $A\hat{O}G=\alpha$ බව පෙන්වා, තන්තු දෙකෙහි ආතති සොයන්න.
6.	දිග $2a$ හා බර W වූ AB ඒකාකාර දණ්ඩක් රූපයේ දැක්වෙන පරිදි සමතුලිතතාවයේ පවතී. G යනු AB හි මධා ලක්ෂාය වේ. $A\hat{O}B=\frac{\pi}{2}$ හා $O\hat{A}B=\alpha$ බව දී ඇත. $A\hat{O}G=\alpha$ බව පෙන්වා, තන්තු දෙකෙහි ආතති සොයන්න.
6.	දිග $2a$ හා බර W වූ AB ඒකාකාර දණ්ඩක් රූපයේ දැක්වෙන පරිදි සමතුලිතතාවයේ පවතී. G යනු AB හි මධා ලක්ෂාය වේ. $A\hat{O}B=\frac{\pi}{2}$ හා $O\hat{A}B=\alpha$ බව දී ඇත. $A\hat{O}G=\alpha$ බව පෙන්වා, තන්තු දෙකෙහි ආතති සොයන්න.
6.	දිග $2a$ හා බර W වූ AB ඒකාකාර දණ්ඩක් රූපයේ දැක්වෙන පරිදි සමතුලිතතාවයේ පවතී. G යනු AB හි මධා ලක්ෂාය වේ. $A\hat{O}B=\frac{\pi}{2}$ හා $O\hat{A}B=\alpha$ බව දී ඇත. $A\hat{O}G=\alpha$ බව පෙන්වා, තන්තු දෙකෙහි ආතති සොයන්න.
6.	දිග $2a$ හා බර W වූ AB ඒකාකාර දණ්ඩක් රූපයේ දැක්වෙන පරිදි සමතුලිතතාවයේ පවතී. G යනු AB හි මධා ලක්ෂාය වේ. $A\hat{O}B=\frac{\pi}{2}$ හා $O\hat{A}B=\alpha$ බව දී ඇත. $A\hat{O}G=\alpha$ බව පෙන්වා, තන්තු දෙකෙහි ආතති සොයන්න.
6.	දිග $2a$ හා බර W වූ AB ඒකාකාර දණ්ඩක් රූපයේ දැක්වෙන පරිදි සමතුලිතතාවයේ පවතී. G යනු AB හි මධා ලක්ෂාය වේ. $A\hat{O}B=\frac{\pi}{2}$ හා $O\hat{A}B=\alpha$ බව දී ඇත. $A\hat{O}G=\alpha$ බව පෙන්වා, තන්තු දෙකෙහි ආතති සොයන්න.
6.	දිග $2a$ හා බර W වූ AB ඒකාකාර දණ්ඩක් රූපයේ දැක්වෙන පරිදි සමතුලිතතාවයේ පවතී. G යනු AB හි මධා ලක්ෂාය වේ. $A\hat{O}B=\frac{\pi}{2}$ හා $O\hat{A}B=\alpha$ බව දී ඇත. $A\hat{O}G=\alpha$ බව පෙන්වා, තන්තු දෙකෙහි ආතති සොයන්න.
6.	දිග $2a$ හා බර W වූ AB ඒකාකාර දණ්ඩක් රූපයේ දැක්වෙන පරිදි සමතුලිතතාවයේ පවතී. G යනු AB හි මධා ලක්ෂාය වේ. $A\hat{O}B=\frac{\pi}{2}$ හා $O\hat{A}B=\alpha$ බව දී ඇත. $A\hat{O}G=\alpha$ බව පෙන්වා, තන්තු දෙකෙහි ආතති සොයන්න.
6.	දිග $2a$ හා බර W වූ AB ඒකාකාර දණ්ඩක් රූපයේ දැක්වෙන පරිදි සමතුලිතතාවයේ පවතී. G යනු AB හි මධා ලක්ෂාය වේ. $A\hat{O}B=\frac{\pi}{2}$ හා $O\hat{A}B=\alpha$ බව දී ඇත. $A\hat{O}G=\alpha$ බව පෙන්වා, තන්තු දෙකෙහි ආතති සොයන්න.
6.	දිග $2a$ හා බර W වූ AB ඒකාකාර දණ්ඩක් රූපයේ දැක්වෙන පරිදි සමතුලිතතාවයේ පවතී. G යනු AB හි මධා ලක්ෂාය වේ. $A\hat{O}B=\frac{\pi}{2}$ හා $O\hat{A}B=\alpha$ බව දී ඇත. $A\hat{O}G=\alpha$ බව පෙන්වා, තන්තු දෙකෙහි ආතති සොයන්න.

7.	3
	$P(A' \cup B') = \frac{5}{6}$ හා $P(B \mid A) = \frac{1}{4}$ බව දී ඇත. $P(A)$ හා $P(B)$ සොයන්න.
×	

8.	මල්ලක, කාඩ් නවයක් අඩංගු වේ. ඒවායින් හතරක 1 සංඛාහංකය මුදුණය කර ඇති අතර ඉතිරි ඒවායේ
1	ට හ වන කය බහුණය කර සහ සම්බේදයාන රහිත ව වරකට එක ව විශේ නැක්මහාවීම මල්කයන් කෘති පවතට
	2 සංඛාහාංකය මුදුණය කර ඇත. පුකිස්ථාපන රහිත ව වරකට එක බැගින් සසම්භාවීව මල්ලෙන් කාඩ් ඉවතට
	ගනු ලැබේ. (i) ඉවතට ගත් පළමු කාඩ් දෙකෙහි සංඛාාංකයන්හි එකතුව හතර වීමේ,
	ගනු ලැබේ. (i) ඉවතට ගත් පළමු කාඩි දෙකෙහි සංඛාහංකයන්හි එකතුව හතර වීමේ, (ii) ඉවතට ගත් පළමු කාඩි තුනෙහි සංඛාහංකයන්හි එකතුව තුන වීමේ,
	ගනු ලැබේ. (i) ඉවතට ගත් පළමු කාඩ් දෙකෙහි සංඛාාංකයන්හි එකතුව හතර වීමේ,
	ගනු ලැබේ. (i) ඉවතට ගත් පළමු කාඩි දෙකෙහි සංඛාහංකයන්හි එකතුව හතර වීමේ, (ii) ඉවතට ගත් පළමු කාඩි තුනෙහි සංඛාහංකයන්හි එකතුව තුන වීමේ,
	ගනු ලැබේ. (i) ඉවතට ගත් පළමු කාඩි දෙකෙහි සංඛාහංකයන්හි එකතුව හතර වීමේ, (ii) ඉවතට ගත් පළමු කාඩි තුනෙහි සංඛාහංකයන්හි එකතුව තුන වීමේ,
	ගනු ලැබේ. (i) ඉවතට ගත් පළමු කාඩි දෙකෙහි සංඛාහංකයන්හි එකතුව හතර වීමේ, (ii) ඉවතට ගත් පළමු කාඩි තුනෙහි සංඛාහංකයන්හි එකතුව තුන වීමේ,
	ගනු ලැබේ. (i) ඉවතට ගත් පළමු කාඩි දෙකෙහි සංඛාහංකයන්හි එකතුව හතර වීමේ, (ii) ඉවතට ගත් පළමු කාඩි තුනෙහි සංඛාහංකයන්හි එකතුව තුන වීමේ,
	ගනු ලැබේ. (i) ඉවතට ගත් පළමු කාඩි දෙකෙහි සංඛාහංකයන්හි එකතුව හතර වීමේ, (ii) ඉවතට ගත් පළමු කාඩි තුනෙහි සංඛාහංකයන්හි එකතුව තුන වීමේ,
	ගනු ලැබේ. (i) ඉවතට ගත් පළමු කාඩි දෙකෙහි සංඛාහංකයන්හි එකතුව හතර වීමේ, (ii) ඉවතට ගත් පළමු කාඩි තුනෙහි සංඛාහංකයන්හි එකතුව තුන වීමේ,
	ගනු ලැබේ. (i) ඉවතට ගත් පළමු කාඩි දෙකෙහි සංඛාහංකයන්හි එකතුව හතර වීමේ, (ii) ඉවතට ගත් පළමු කාඩි තුනෙහි සංඛාහංකයන්හි එකතුව තුන වීමේ,
	ගනු ලැබේ. (i) ඉවතට ගත් පළමු කාඩි දෙකෙහි සංඛාහංකයන්හි එකතුව හතර වීමේ, (ii) ඉවතට ගත් පළමු කාඩි තුනෙහි සංඛාහංකයන්හි එකතුව තුන වීමේ,
	ගනු ලැබේ. (i) ඉවතට ගත් පළමු කාඩි දෙකෙහි සංඛාහංකයන්හි එකතුව හතර වීමේ, (ii) ඉවතට ගත් පළමු කාඩි තුනෙහි සංඛාහංකයන්හි එකතුව තුන වීමේ,
	ගනු ලැබේ. (i) ඉවතට ගත් පළමු කාඩි දෙකෙහි සංඛාහංකයන්හි එකතුව හතර වීමේ, (ii) ඉවතට ගත් පළමු කාඩි තුනෙහි සංඛාහංකයන්හි එකතුව තුන වීමේ,
	ගනු ලැබේ. (i) ඉවතට ගත් පළමු කාඩි දෙකෙහි සංඛාහංකයන්හි එකතුව හතර වීමේ, (ii) ඉවතට ගත් පළමු කාඩි තුනෙහි සංඛාහංකයන්හි එකතුව තුන වීමේ,
	ගනු ලැබේ. (i) ඉවතට ගත් පළමු කාඩි දෙකෙහි සංඛාහංකයන්හි එකතුව හතර වීමේ, (ii) ඉවතට ගත් පළමු කාඩි තුනෙහි සංඛාහංකයන්හි එකතුව තුන වීමේ,
	ගනු ලැබේ. (i) ඉවතට ගත් පළමු කාඩි දෙකෙහි සංඛාහංකයන්හි එකතුව හතර වීමේ, (ii) ඉවතට ගත් පළමු කාඩි තුනෙහි සංඛාහංකයන්හි එකතුව තුන වීමේ,
	ගනු ලැබේ. (i) ඉවතට ගත් පළමු කාඩි දෙකෙහි සංඛාහංකයන්හි එකතුව හතර වීමේ, (ii) ඉවතට ගත් පළමු කාඩි තුනෙහි සංඛාහංකයන්හි එකතුව තුන වීමේ,
	ගනු ලැබේ. (i) ඉවතට ගත් පළමු කාඩි දෙකෙහි සංඛාහංකයන්හි එකතුව හතර වීමේ, (ii) ඉවතට ගත් පළමු කාඩි තුනෙහි සංඛාහංකයන්හි එකතුව තුන වීමේ,
	ගනු ලැබේ. (i) ඉවතට ගත් පළමු කාඩි දෙකෙහි සංඛාහංකයන්හි එකතුව හතර වීමේ, (ii) ඉවතට ගත් පළමු කාඩි තුනෙහි සංඛාහංකයන්හි එකතුව තුන වීමේ,

9.	නිරීක්ෂණ හයක අගයන් a,a,b,b,x හා y වේ; මෙහි a,b,x හා y යනු පුභින්න ධන නිඛිල වන අතර $a\!<\!b$ වේ. මෙම නිරීක්ෂණ හයෙහි මාතයන් මොනවා ද?
	මෙම මාතයන්හි ඓකාසය හා ගුණිතය පිළිවෙළින් x හා y බව දී ඇත. නිරීක්ෂණ හයෙහි මධානාසය $rac{7}{2}$ වේ
	නම්, a හා b ඉසායන්න.
	*
	,
10.	x_1, x_2, \ldots, x_{10} යන සංඛාා දහයෙහි මධානාපය හා විචලතාව පිළිවෙළින් 10 හා 9 වේ. x_{10} සංඛාාව ඉවත්
10.	x_1, x_2, \dots, x_{10} යන සංඛාහ දහයෙහි මධානාය හා විචලතාව පිළිවෙළින් 10 හා 9 වේ. x_{10} සංඛාහ ඉවත් කිරීමෙන් පසු ඉතිරි වන සංඛාහ නවයෙහි ද මධානාය 10 බව දී ඇත. මෙම සංඛාහ නවයෙහි විචලතාව
10.	
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාහ නවයෙහි ද මධානාසය 10 බව දී ඇත. මෙම සංඛාහ නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාහ නවයෙහි ද මධානාසය 10 බව දී ඇත. මෙම සංඛාහ නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාහ නවයෙහි ද මධානාසය 10 බව දී ඇත. මෙම සංඛාහ නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාහ නවයෙහි ද මධානාසය 10 බව දී ඇත. මෙම සංඛාහ නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාහ නවයෙහි ද මධානාසය 10 බව දී ඇත. මෙම සංඛාහ නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාහ නවයෙහි ද මධානාසය 10 බව දී ඇත. මෙම සංඛාහ නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාහ නවයෙහි ද මධානාසය 10 බව දී ඇත. මෙම සංඛාහ නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාහ නවයෙහි ද මධානාසය 10 බව දී ඇත. මෙම සංඛාහ නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාහ නවයෙහි ද මධානාසය 10 බව දී ඇත. මෙම සංඛාහ නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාහ නවයෙහි ද මධානාසය 10 බව දී ඇත. මෙම සංඛාහ නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාහ නවයෙහි ද මධානාසය 10 බව දී ඇත. මෙම සංඛාහ නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාහ නවයෙහි ද මධානාසය 10 බව දී ඇත. මෙම සංඛාහ නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාහ නවයෙහි ද මධානාසය 10 බව දී ඇත. මෙම සංඛාහ නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාහ නවයෙහි ද මධානාසය 10 බව දී ඇත. මෙම සංඛාහ නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාහ නවයෙහි ද මධානාසය 10 බව දී ඇත. මෙම සංඛාහ නවයෙහි විචලතාව

हांकडु छ हरिकार क्रिटिक /क्रुक्वं चक्रियम् क्रिक्क्याक्रा All Rights Reserved

අධානයන පොදු සහනික පතු (උසස් පෙළ) විභාගය, 2017 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2017 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2017

සංයුක්ත ගණිතය

II

இணைந்த கணிதம் Combined Mathematics 10 S II

B කොටස

* පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

(මෙම පුශ්න පතුයෙහි දු මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.)

11. (a) උස a වූ සිරස් කුළුණක පාදය, තිරස් පොළොව මත වූ අරය 2a වන වෘත්තාකාර පොකුණක C කේත්දුයෙහි ඇත. කුළුණ මුදුනේ සිට තිරසෙන් ඉහළට $\frac{\pi}{4}$ කෝණයකින් u වේගයක් සහිත ව කුඩා ගලක් පුක්ෂේප කරනු ලැබේ. (රූපය බලන්න.) ගල, ගුරුත්වය යටතේ නිදහසේ වලනය වී C සිට R දුරකින් C හරහා වූ තිරස් තලයෙහි වදියි. $gR^2 - u^2R - u^2a = 0$ සමීකරණය මගින් R දෙනු ලබන බව පෙන්වන්න.

 $u.\,a$ හා g ඇසුරෙන් R සොයා, $u^2 > \frac{4}{3}\,ga$ නම්, ගල පොකුණ තුළට නොවැටෙන බව අපෝහනය කරන්න.

(b) S නැවක් පොළොවට සාපේක්ෂව u km h^{-1} ඒකාකාර වේගයෙන් නැගෙනහිර දිශාවට යානුා කරයි. B බෝට්ටුවක සිට බටහිරින් දකුණට θ කෝණයකින් l km දුරක නැව තිබෙන මොහොතේ දී බෝට්ටුව, නැව හමුවන අපේක්ෂාවෙන්, පොළොවට සාපේක්ෂව v km h^{-1} ඒකාකාර වේගයෙන් සරල රේඛීය පෙනක ගමන් කරයි; මෙහි $u\sin\theta < v < u$ වේ. නැව හා බෝට්ටුව ඒවායේ වේග හා පෙන් නොවෙනස්ව පවත්වා ගත්තේ යැයි උපකල්පනය කරමින්, පොළොවට සාපේක්ෂව බෝට්ටුවට ගත හැකි පෙන් දෙක නිර්ණය කිරීම සඳහා පුවේග තිකෝණවල දළ සටහන් එක ම රූපයක අඳින්න.

පොළොවට සාපේක්ෂව බෝට්ටුවට ගත හැකි චලිත දිශා දෙක අතර කෝණය $\pi-2\alpha$ බව පෙන්වන්න; මෙහි $\alpha=\sin^{-1}\left(\frac{u\sin\theta}{v}\right)$ වේ.

මෙම පෙත් දෙක දිගේ නැව හමුවීම සඳහා බෝට්ටුව ගනු ලබන කාල, පැය t_1 හා පැය t_2 යැයි ගනිමු. $t_1 + t_2 = \frac{2lu\cos\theta}{u^2 - v^2}$ බව පෙන්වන්න.

12.(a) රූපයෙහි දැක්වෙන ABCD තුපීසියම, ස්කන්ධය 2m වූ සුමට ඒකාකාර කුට්ටියක ගුරුත්ව කේන්දුය ඔස්සේ යන සිරස් හරස්කඩකි. AD හා BC රේඛා සමාන්තර වන අතර AB රේඛාව එය අඩංගු මුහුණතෙහි උපරීම බෑවුම් රේඛාවක් වේ. තව ද AB=2a ද $B\hat{A}D=\alpha$ ද වේ; මෙහි $0<\alpha<\frac{\pi}{2}$ හා $\cos\alpha=\frac{3}{5}$ වේ. AD අයත් මුහුණත සුමට තිරස් ගෙබීමක් මත ඇතිව කුට්ටිය තබනු ලබයි. දිග l (> 2a) වූ සැහැල්ලු

අවිතනා තන්තුවක් B හි පිහිටි කුඩා සුමට කප්පියක් උඩින් යන අතර එහි එක් කෙළවරකට ස්කන්ධය m වූ P අංශුවක් ද අනෙක් කෙළවරට එම m ස්කන්ධය ම සහිත වෙනත් Q අංශුවක් ද ඇදා ඇත. රූපයේ දැක්වෙන පරිදි P අංශුව AB හි මධා ලක්ෂායේ ද Q අංශුව BC මත ද තබා තන්තුව තදව ඇතිව පද්ධතිය තිශ්වලතාවයේ සිට මුදා හරිනු ලැබේ.

ගෙබීමට සාපේක්වේ කුට්ටියේ ත්වරණය $\frac{4}{17}$ g බව පෙන්වා, කුට්ටියට සාපේක්වේ P හි ත්වරණය සොයන්න.

නව ද P අංශුව A කරා ළඟා වීමට ගන්නා කාලය $\sqrt{\frac{17a}{5g}}$ බව පෙන්වන්න.

(b) එක එකක ස්කන්ධය m වූ A හා B අංශු දෙකක් දිග $l(>2\pi a)$ වූ සැහැල්ලු අවිතනෳ තන්තුවක දෙකෙළවරට ඇඳනු ලැබේ. ස්කන්ධය 2m වූ C අංශුවක් තන්තුවේ මධෳ ලක්ෂෳයට ඈඳනු ලැබේ. කේන්දුය O හා අරය a වූ අචල සුමට ගෝලයක උච්චතම ලක්ෂෳයෙහි C අංශුව ඇතිව ද A හා B අංශු O තුළින් වූ සිරස් තලයක නිදහසේ එල්ලෙමින් ද රූපයේ දැක්වෙන පරිදි තන්තුව ගෝලය මතින් තබා ඇත. සරල රේඛීය පෙතක A අංශුව පහළට චලනය වන පරිදි C අංශුවට ගෝලය මත එම සිරස් තලයේ ම කුඩා විස්ථාපනයක් දෙනු ලැබේ. C අංශුව ගෝලය සමග ස්පර්ශව ඇතිතාක් $\dot{\theta}^2 = \frac{g}{a}(1-\cos\theta)$ බව පෙන්වන්න; මෙහි θ යනු OC හැරී තිබෙන කෝණය වේ.

 $heta=rac{\pi}{3}$ වන විට C අංශුව, ගෝලය අතහැර යන බව තවදුරටත් පෙන්වන්න.

13 ස්වාභාවික දිග a හා පුතනස්ථතා මාපාංකය mg වූ සැහැල්ලු පුතනස්ථ තන්තුවක එක් කෙළවරක් සුමට තිරස් ගෙබිමකට 3a උසක් ඉහළින් වූ O අවල ලක්ෂනයකට ඇදා ඇති අතර අනෙක් කෙළවර ස්කන්ධය m වූ අංශුවකට ඇදා ඇත. අංශුව O අසලින් තබා, \sqrt{ga} වේගයකින් සිරස් ව පහළට පුක්ෂේප කරනු ලැබේ. තන්තුවේ දිග x යන්න, $a \le x < 3a$ සඳහා $\ddot{x} + \frac{g}{a}(x-2a) = 0$ සමීකරණය සපුරාලන බව පෙන්වා මෙම සරල අනුවර්තී චලිතයෙහි කේන්දුය සොයන්න.

ගෙබීම සමග පළමු ගැටුම තෙක් අංශුවේ පහළට චලිතය සඳහා ශක්ති සංස්ථිති මූලධර්මය යෙදීමෙන් $a \le x < 3a$ සඳහා $\dot{x}^2 = \frac{8}{a} \left(4ax - x^2 \right)$ බව පෙන්වන්න.

X = x - 2a යැයි ගනිමින් අවසාන සමීකරණය $-a \le X < a$ සඳහා $\dot{X}^2 = \frac{g}{a} \left(A^2 - X^2 \right)$ ආකාරයෙන් පුකාශ කරන්න; මෙහි A යනු නිර්ණය කළ යුතු විස්තාරය වේ.

ගෙබීම සමග පළමු ගැටුමට මොහොතකට පෙර අංගුවේ පුවේගය කුමක් ද?

අංශුව හා ගෙබීම අතර පුතාහාගති සංගුණකය $\frac{1}{\sqrt{3}}$ වේ. පළමු ගැටුමෙන් පසු තන්තුව බුරුල් වන තෙක් අංශුවේ උඩු අත් චලිතයට $-a \leq X < a$ සඳහා $\dot{X}^2 = \frac{g}{a} \Big(B^2 - X^2 \Big)$ බව දී ඇත; මෙහි B යනු මෙම නව සරල අනුවර්තී චලිතයේ-නිර්ණය කළ යුතු විස්තාරය වේ.

ඉහතින් විස්තර කරන ලද යටි අත් හා උඩු අත් සරල අනුවර්තී චලිතවල අංශුව යෙදෙන මුළු කාලය $\frac{5\pi}{6}\sqrt{\frac{a}{g}}$ බව පෙන්වන්න.

14. (a) A හා B සමග **ඒක රේඛය නොවන** O අචල මූලයක් අනුබද්ධයෙන් A හා B පුහින්න ලක්ෂා දෙකක පිහිටුම දෛශික පිළිවෙළින් a හා b වේ. O අනුබද්ධයෙන් C ලක්ෂායක පිහිටුම දෛශිකය $c = (1 - \lambda) a + \lambda b$ යැයි ගනිමු; මෙහි $0 < \lambda < 1$ වේ.

 \overrightarrow{AC} හා \overrightarrow{CB} ලෙදශික \mathbf{a},\mathbf{b} හා λ ඇසුරෙන් පුකාශ කරන්න.

ඒ නයින්, C ලක්ෂාය AB රේඛා ඛණ්ඩය මත පිහිටන බවත් $AC:CB=\lambda:(1-\lambda)$ බවත් පෙන්වන්න. දැන්, OC රේඛාව AOB කෝණය සමච්ඡේදනය කරන්නේ යැයි සිතමු. $|\mathbf{b}|(\mathbf{a}\cdot\mathbf{c})=|\mathbf{a}|(\mathbf{b}\cdot\mathbf{c})$ බව පෙන්වා ඒ නයින්, λ සොයන්න.

(b) රූපයෙහි ABCD යනු AB=1 m හා $BC=\sqrt{3}$ m වූ සාජුකෝණාසුයක් වන අතර CDE යනු සමපාද තිකෝණයකි. ව්ශාලත්වය නිව්වන 5, $2\sqrt{3}$, 3, $4\sqrt{3}$, P හා Q වූ බල පිළිවෙළින් BA, DA, DC, CB, CE හා DE දිගේ අක්ෂර අනුපිළිවෙළින් දැක්වෙන D දිශාවලට කියාකරයි. මෙම බල පද්ධතිය යුග්මයකට ඌනතය වේ. P=4 හා Q=8 බව පෙන්වා, මෙම යුග්මයේ සූර්ණය සොයන්නෑ දැන්, BA හා DA දිගේ කියාකරන බලවල විශාලත්ව එලෙසම තිබිය දී ඒවායේ දිශා පුතිවර්තා කරනු ලැබේ. නව පද්ධතිය විශාලත්වය නිව්වන $2\sqrt{37}$ සහිත තනි සම්පුයුක්ත බලයකට ඌනනය වන බව පෙන්වන්න.

මෙම සම්පුයුක්ත බලයේ කිුිියාරේඛාව දික් කළ BA හමුවන ලක්ෂායට A සිට ඇති දුර $\frac{7}{4}$ m බව තවදුරටත් පෙන්වන්න.

15. (a) බර Wහා පැත්තක දිග 2a වන ඒකාකාර සනකාකාර කුට්ටියක් රථ තිරස් ගෙබීමක් මත තබා ඇත. බර 2W හා දිග 2a වූ ඒකාකාර AB දණ්ඩක A කෙළවර තිරස් ගෙබීමෙහි ලක්ෂපයකට සුමට ලෙස අසව් කර ඇති අතර B කෙළවර සනකයේ සුමට සිරස් මුහුණතකට එරෙහිව එහි කේන්දුයේ තබා ඇත. දණ්ඩ ඔස්සේ යන සිරස් තලය කුට්ටියේ එම සිරස් මුහුණතට ලම්බ වන අතර පද්ධතිය සමතුලිතතාවයේ පවතී. (අදාළ සිරස් හරස්කඩ සඳහා රූපය බලන්න.) සනකාකාර කුට්ටිය හා රඑ තිරස් ගෙබීම අතර සර්ෂණ සංගුණකය µ වේ. µ ≥ √3 බව පෙන්වත්න.

බෝ අංකනය භාවිතයෙන් පුතෳාබල සටහ<mark>නක් ඇඳ ඒ නයින්,</mark> සියලු ම දඬුවල පුතෳාබල සොයා ඒවා ආතති ද තෙරපුම් ද යන්න පුකාශ කරන්න.

16. කේත්දුය C හා අරය a වූ අර්ධ වෘත්තාකාර චාපයක හැඩයෙන් යුත් කුති ඒකාකාර කම්බියක ස්කන්ධ කේන්දුය C සිට $\frac{2a}{\pi}$ දුරකින් ඇති බව පෙන්වන්න.

යාබද රූපයෙහි PQ, PR හා ST යනු, ඒකක දිගක ස්කන්ධය P වූ තුනී ඒකාකාර කම්බියකින් කපා ගත් සරල රේඛීය කැබලි තුනකි. PQ හා PR කැබලි දෙක P ලක්ෂායෙහි දී එකිනෙකට පාස්සා ඉන් පසු Q හා R ලක්ෂාවල දී ST ව පාස්සා ඇත. PQ = PR = a, ST = 2a හා $PO = \frac{a}{2}$ බව දී ඇත; මෙහි O යනු QR හා ST යන දෙකෙහි ම මධා ලක්ෂාය වේ. තව ද SUT යනු ඒකක දිගක ස්කන්ධය kP වූ තුනී ඒකාකාර කම්බියකින් සාදා ගත් කේන්දුය O හා අරය a වූ අර්ධ වෘත්තාකාර වාපයකි; මෙහි k (> 0) නියතයක් වේ. SUT අර්ධ

වෘත්තාකාර කම්බිය PQR තලයේ S හා T ලක්ෂාවල දී ST කම්බියට පාස්සා රූපයේ දැක්වෙන L දෘඪ තල කම්බි රාමුව සාදා ඇත. L හි ස්කන්ධ කේන්දුය P සිට $\left(\frac{\pi k + 4k + 3}{\pi k + 4}\right)\frac{a}{2}$ දුරකින් ඇති බව පෙන්වන්න.

යාබද රූපයේ පෙන්වා ඇති පරිදි L කම්බි රාමුව, එහි වෘන්තාකාර කොටස සුමට සිරස් බිත්තියක හා ලිස්සා යාම වැළැක්වීමට පුමාණවත් තරම් රළු තිරස් ගෙබීමක ස්පර්ශ චෙමින්, එහි තලය බිත්තියට ලම්බව සමතුලිතව ඇත. L මත සියාකරන බල ලකුණු කර $k>\frac{1}{4}$ බව පෙන්වන්න.

දැන් k=1 යැයි ගනිමු. P ලක්ෂායේ දී ස්කන්ධය m වන අංශුවක් L ට සම්බන්ධ කළ පසු ද ඉහත පිහිටීමේ ම සමතුලිනතාව පවත්වාගෙන යයි. $m<3\rho a$ බව පෙන්වන්න.

(a) A. B හා C යන මලු එක එකක, පාටින් හැර අන් සෑම අයුරකින්ම සර්වසම, සුදු බෝල හා කළු බෝල පමණක් අඩංගු වේ. A මල්ලෙහි සුදු බෝල 4 ක් හා කළු බෝල 2 ක් ද B මල්ලෙහි සුදු බෝල 2 ක් හා කළු බෝල 4 ක් ද C මල්ලෙහි සුදු බෝල m හා කළු බෝල (m+1) ක් ද අඩංගු වේ. මල්ලක් සසම්භාවීව තෝරා ගෙන එකකට පසු ව අනෙක ලෙස පුතිෂ්ථාපනයෙන් තොරව සසම්භාවීව බෝල දෙකක් එම මල්ලෙන් ඉවතට ගනු ලැබේ. ඉවතට ගත් පළමු බෝලය සුදු හා ඉවතට ගත් දෙවන බෝලය කළු වීමේ සම්භාවිතාව

 $\frac{5}{18}$ වේ. m හි අගය සොයන්න.

තව ද ඉවතට ගත් පළමු බෝලය සුදු හා ඉවතට ගත් දෙවන බෝලය කළු බව දී ඇති විට, *C* මල්ල තෝරා ගෙන තිබීමේ සම්භාවිතාව සොයන්න.

(b) ශිෂායන් 100 ක කණ්ඩායමක්, සංඛාාන පුශ්නයකට ඔවුන්ගේ පිළිතුරු සඳහා ලබා ගත් ලකුණුවල වාහප්තිය පහත වශුවෙහි දැක්වේ.

ලකුණු පරාසය	ලිසෙ සංඛන
0-2	15
2 - 4	25
4-6	40
6 - 8	15
8 - 10	5

මෙම වසාප්තියේ මධානාසය μ හා සම්මත අපගමනය σ නිමානය කරන්න.

 $\kappa = \frac{3(\mu - M)}{\sigma}$ මගින් අර්ථ දැක්වෙන කුටිකතා සංගුණකය κ ද නිමානය කරන්න; මෙහි Mයනු වනප්තියේ මධ්‍යස්ථය වේ.

Visit Online Panthiya YouTube channel to watch Combined Maths and Chemistry Videos

