සියලු ම හිමිකම් ඇවිරිණි / முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

# ((නව නිඊදේශය/பුதிய பாடத்திட்டம்/New Syllabus)

ත්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව මී ලංකා විභාග දෙපාර්තමේන්තුව நணக்களம் இலங்கைப் பந்டனத் தினைக்களில் இலங்கைப் பந்டனைக்களில் இலங்கைப் பந்டனைக்களில் ந. Sri Lanka Department of **இலங்கைய**ாப்**பநாட்ணனத்**ருக்**னனைக்களில்**, Sri Lanka Department of Examinations, Sri Lanka තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා මාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව නணக்களம் இலங்கைப் இலங்கைப் இலங்கைக்களில் இலங்கைப் பந்டனைக்களில்

අධාායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

භෞතික විදනව பௌதிகவியல் **Physics** 

II II II

පැය තුනයි

மூன்று மணித்தியாலம் Three hours

අමතර කියවීම් කාලය

- මිනිත්තු 10 යි

மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள்

- 10 minutes Additional Reading Time

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේ දී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

| විභාග | අංකය | : |  |  |  |  |  |  | ٠. |  | <br>• | • • |  | • | • |  | • • |  |  |
|-------|------|---|--|--|--|--|--|--|----|--|-------|-----|--|---|---|--|-----|--|--|

## වැදගත් :

- 🔻 මෙම පුශ්න පතුය පිටු 16 කින් යුක්ත වේ.
- lpha මෙම පුශ්න පතුය  ${f A}$  සහ  ${f B}$  යන කොටස් **දෙකකින්** යුක්ත වේ. **කොටස් දෙකට ම** නියමිත කාලය **පැග** තුනකි.
- 🛪 ගණක යන්තු භාවිතයට ඉඩ දෙනු නො ලැබේ.

# A කොටස - වපුහගත රචනා **(පිටු 2 - 8)**

**සියලු ම** පුශ්නවලට පිළිතුරු මෙම පතුයේ ම සපයන්න. ඔබේ පිළිතුරු, පුශ්න පතුයේ ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නො වන බව ද සලකන්න.

# B කොටස - රචනා **(82** 9 - 16)

මෙම කොටස පුශ්න **හයකින්** සමන්විත වන අතර පුශ්න **හතරකට** පමණක් පිළිතුරු සැපයිය යුතු ය. මේ සඳහා සපයනු ලබන කඩදාසි පාවිච්චි කරන්න.

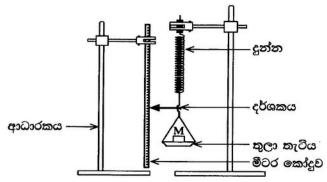
- 🛪 සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවසන් වූ පසු  ${f A}$  සහ  ${f B}$  කොටස් එක් පිළිතුරු පතුයක් වන සේ, A කොටස B කොටසට උඩින් තිබෙන පරිදි අමුණා, විභාග ශාලාධිපතිට භාර දෙන්න.
- 💥 පුශ්න පතුයේ **B කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

| (     | පරීක්ෂකවරුන්ගේ<br>සඳහා පම |            |
|-------|---------------------------|------------|
|       | දෙවැනි පතුය               | සඳහා       |
| කොටස  | පුශ්න අංක                 | ලැබී ලක්කි |
|       | 1                         |            |
|       | 2                         |            |
| A     | 3                         |            |
|       | 4                         |            |
|       | 5                         |            |
|       | 6                         |            |
|       | 7                         |            |
| _     | 8                         |            |
| В     | 9(A)                      |            |
|       | 9(B)                      |            |
|       | 10(A)                     |            |
|       | 10(B)                     |            |
|       | ඉලක්කමෙන්                 |            |
| එකතුව | අකුරෙන්                   |            |

උත්තර පතු පරීක්ෂක 1

උත්තර පතු පරීක්ෂක 2 ලකුණු පරීක්ෂා කළේ

අධීක්ෂණය කළේ

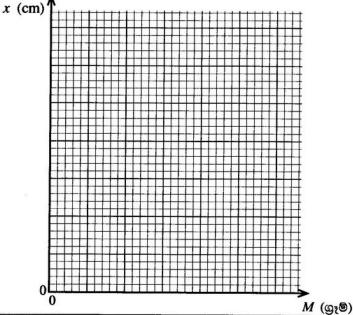

[දෙවැනි පිටුව බලන්න.

සංකේත අංක

# ${f A}$ කොටස**- ව**හුගගත රචනා පුශ්න **ගතරට ම** පිළිතුරු **මෙම පතුයේ ම** සපයන්න. $(g = 10~{ m m~s^{-2}})$

මෙම තීරයේ කිසිවක් නො ලියන්න

1. භාරය එදිරියෙන් විතතිය ප්‍රස්තාරයක් ඇඳීම මගින් හෙලික්සීය දුන්නක දුනු නියතය (k) නිර්ණය කිරීමට ඔබට නියමව ඇත. රූපයේ පෙන්වා ඇති පරීක්ෂණාගාර ඇටවුමේ, දුන්නේ එක් කෙළවරක් තුලා තැටියකට ඇඳා ඇති අතර අනෙක් කෙළවර ආධාරකයකට දෘඪව සම්බන්ධ කොට ඇත. තුලා තැටියේ සහ දුන්නේ ස්කන්ධ නොසලකා හැරිය හැකියැයි උපකල්පනය කරන්න.



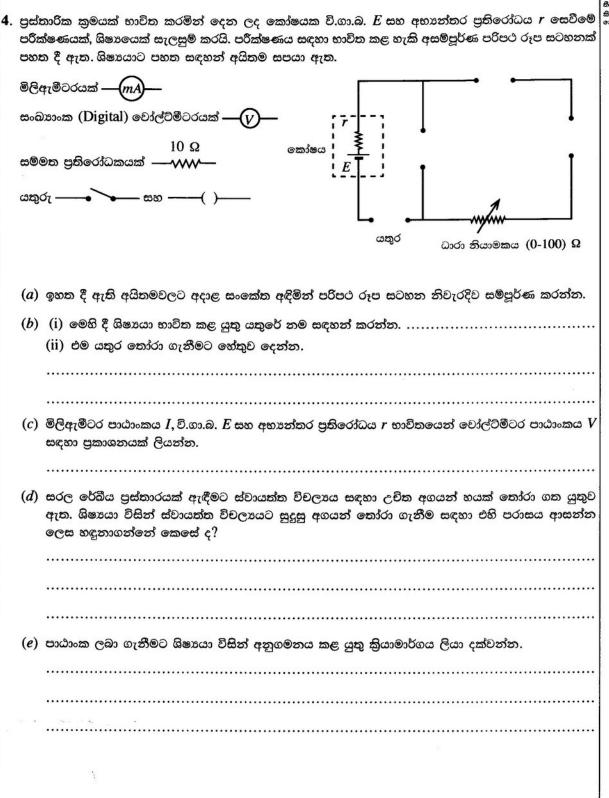

(a) දුන්නට F බලයක් යෙදූවිට දුන්නේ දිග x පුමාණයකින් වැඩිවේ. F සඳහා පුකාශනයක් k සහ x ඇසුරෙන් ලියා දක්වන්න.

(b) (i) තුලා තැටිය මත තබන ස්කන්ධවල අගයයන් (M) සහ ඊට අනුරූප දර්ශකයේ පාඨාංක පහත වගුවේ දී ඇත. වගුවේ ඇති විතති තීරුව සම්පූර්ණ කරන්න.

| තුලා තැටිය මත ඇති<br>ස්කන්ධය, <i>M</i> (ගුෑම්) | දර්ශකයේ පාඨාංකය (cm) | දුන්නේ විතතිය <i>x</i> (cm) |
|------------------------------------------------|----------------------|-----------------------------|
| 0                                              | 1.0                  | 0                           |
| 50                                             | 2.0                  |                             |
| 100                                            | 3.0                  |                             |
| 150                                            | 4.0                  |                             |
| 200                                            | 5.2                  |                             |
| 250                                            | 6.0                  |                             |
| 300                                            | 6.8                  |                             |

(ii) තුලා තැටිය මත ඇති ස්කන්ධය  $M(\mathfrak{g}_{\mathbb{F}})$  ට එදිරියෙන් විතතිය x (cm) පුස්තාරයක් පහත ජාලයේ අඳින්න.




| AI | L/ <b>20</b> 2 | 20/01-S-II(NEW) - 3 - විභාග අංකය:                                                                                                                |                                      |
|----|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|    |                | (iii) ඉහත අඳින ලද පුස්තාරය භාවිත කොට $k$ හි අගය $SI$ ඒකකවලින් නිර්ණය කරන්න.                                                                      | මෙම<br>තීරයේ<br>කිසිවක්<br>නො ලියන්ද |
|    |                |                                                                                                                                                  |                                      |
|    |                |                                                                                                                                                  |                                      |
|    |                |                                                                                                                                                  |                                      |
|    |                | · · · · · · · · · · · · · · · · · · ·                                                                                                            |                                      |
|    | (c)            | පාඨාංක ගැනීමේ දී ඔබ පිළිපැදිය යුතු අතාවශා පරීක්ෂණාත්මක පියවර දෙකක් ලියා දක්වන්න.                                                                 |                                      |
|    |                | (1)                                                                                                                                              |                                      |
|    |                |                                                                                                                                                  |                                      |
|    |                | (2)                                                                                                                                              |                                      |
|    |                |                                                                                                                                                  |                                      |
|    | ( <i>d</i> )   | $k$ හි පුතිශත දෝෂය $5\%$ ක් ඇතුළත පවත්වා ගැනීම සඳහා $k$ අගයෙහි තිබිය යුතු උපරිම දෝෂය ( $\Delta k$ ) කොපමණ ද?                                     |                                      |
|    |                |                                                                                                                                                  | _                                    |
|    |                |                                                                                                                                                  |                                      |
|    | (e)            | ස්කන්ධය නොගිණිය හැකි වෙනත් දුන්නක් ඉහත දුන්න සමඟ ශේුණිගතව සම්බන්ධ කොට කලින්                                                                      |                                      |
|    |                | සඳහන් කළ ස්කන්ධ සමඟ පරීක්ෂණය නැවත කරන ලදී. මේ අවස්ථාව සඳහා බලාපොරොත්තු විය හැකි පුස්තාරය ඉහත $(b)$ $(ii)$ හි ඇති ජාලයේම ඇඳ එය $Q$ ලෙස නම් කරන්න. |                                      |
| 2. | දිග ,          | L වූ ක්විල් නළයක් තුළ සිරවී ඇති වියළි වායු කඳක් භාවිතයෙන් වායුගෝලීය පීඩනය නිර්ණය කිරීමට                                                          |                                      |
|    |                | ට නියමව ඇත. පෙන්වා ඇති රූපය අසම්පූර්ණ වන අතර පරිමාණයට ඇඳ නොමැත.                                                                                  |                                      |
|    |                |                                                                                                                                                  |                                      |
|    |                | <i>*</i>                                                                                                                                         |                                      |
|    |                |                                                                                                                                                  |                                      |
|    |                |                                                                                                                                                  |                                      |
|    |                |                                                                                                                                                  |                                      |
|    |                |                                                                                                                                                  |                                      |
|    |                |                                                                                                                                                  |                                      |
|    |                |                                                                                                                                                  |                                      |
|    |                | h h                                                                                                                                              |                                      |
|    |                |                                                                                                                                                  |                                      |
|    |                |                                                                                                                                                  | 50                                   |
|    |                |                                                                                                                                                  |                                      |
|    |                |                                                                                                                                                  |                                      |
|    | (a)            | සුදුසු අයිතමයන් ඇඳ පරීක්ෂණාත්මක ඇටවුම සම්පූර්ණ කර එම අයිතමයන් නම් කරන්න.                                                                         |                                      |
|    | (b)            | මෙම පරීක්ෂණයේ දී භාවිත කරන ක්විල් නළයේ දිග සහ අභෳන්තර විෂ්කම්භයේ දළ අගයන් කොපමණ ද?                                                               |                                      |
|    |                | ξω :cm                                                                                                                                           |                                      |
|    |                | අභානත්තර විෂ්කම්භය :mm                                                                                                                           |                                      |
|    |                |                                                                                                                                                  |                                      |

| (c) |               | පරීක්ෂණයේ දී භාවිත කරන<br>ර යටින් ඉරක් අඳින්න.            | රසදිය කලේ දිග ආසන                                                                                               | ්න වශයෙන් කොපමණ විය යුතු ද? නිවැර                  | තීරයේ<br>කිසිවක්<br>නො ලියන්න |
|-----|---------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------|
|     | (1) 2         | cm                                                        | (2) 10 cm                                                                                                       | (3) 30 cm                                          |                               |
| (d) |               | ංස් අභාපන්තර හරස්කඩ වර්ග<br>න් cm වලින් ඇති අතර A , cı    | 38님 () 프린트 (1985년 1일 : 1985년 1일 : 1985년 1985년 - 1985년   | ය පීඩනය $H$ (cm $\mathrm{Hg}$ වලින්) වේ. මෙහි $l,$ | r                             |
|     | (i)           | සිරවී ඇති වායු කඳෙහි පීඩන<br>දක්වන්න.                     | ාය (cm Hg වලින්) සඳහ                                                                                            | ා පුකාශනයක් $H,h,x$ සහ $L$ ඇසුරෙන් ලිය             | 0                             |
|     |               |                                                           |                                                                                                                 |                                                    |                               |
|     |               |                                                           |                                                                                                                 |                                                    |                               |
|     | (ii)          | සිරවී ඇති වායු කඳට බො $\delta h,x,L,l,A$ සහ නියතයක් ( $k$ | : 100mm | මින් $H$ නිර්ණය කිරීම සඳහා පුකාශනයක                | 8                             |
|     |               |                                                           |                                                                                                                 |                                                    |                               |
|     |               |                                                           |                                                                                                                 |                                                    | •                             |
|     | (iii)         | සරල රේබීය පුස්තාරයක් ඇඹ<br>නැවත සකසන්න.                   | දීමෙන් <i>H</i> නිර්ණය කිරීම                                                                                    | සඳහා ඉහත ( <i>d</i> ) (ii) හි ලබාගත් පුකාශනය       |                               |
|     |               |                                                           |                                                                                                                 |                                                    |                               |
|     |               |                                                           |                                                                                                                 |                                                    |                               |
|     |               |                                                           |                                                                                                                 |                                                    | -                             |
|     | (iv)          | ඉහත ( <i>d</i> ) (iii) හි සඳහන් පුස්                      | තාරයේ ස්වායත්ත සහ                                                                                               | පරායත්ත විචලෳයන් හඳුන්වන්න.                        |                               |
|     |               | ස්වායත්ත විචලාය :                                         |                                                                                                                 |                                                    |                               |
|     |               | පරායත්ත විචලෳය :                                          |                                                                                                                 |                                                    |                               |
|     | (v)           | අක්ෂ නම් කරමින්, ඔබ බලා<br>ලෙස නම් කරන්න.                 | පොරොත්තු වන පුස්තාශ                                                                                             | රයේ දළ සටහනක් අඳින්න. ඇඳි රේඛාව <i>l</i>           |                               |
|     |               |                                                           |                                                                                                                 | <b>-</b>                                           |                               |
|     |               | (0                                                        | ,0)                                                                                                             |                                                    |                               |
|     | (vi)          | පුස්තාරයෙන් උකහා ගන්නා (<br>සඳහා පුකාශනයක් ලියා දක්වි     |                                                                                                                 | පරාමිති භාවිතයෙන් වායුගෝලීය පීඩනය <i>R</i>         | I                             |
|     |               |                                                           |                                                                                                                 |                                                    |                               |
|     |               |                                                           |                                                                                                                 |                                                    |                               |
| (e) | 2000 Julie J. | යන් විචලනය කිරීම සඳහා ද<br>් ඉරක් අඳින්න.                 | පුදුසුතම පරීක්ෂණාත්මෘ                                                                                           | ා කිුයා පිළිවෙළ කුමක් ද? නිවැ <i>ර</i> දි පිළිතුර  | 5                             |
|     |               | අඩු අගයක සිට වැඩි අගයක්                                   | කරා / වැඩි අගයක සි                                                                                              | ට අඩු අගයක් කරා                                    |                               |
|     | (ii)          | හේතුව දෙන්න                                               |                                                                                                                 |                                                    |                               |
|     |               |                                                           |                                                                                                                 |                                                    | (.)                           |
| (f) | පරීක්         | ෂණය පුරාවටම. නළයේ සිර                                     | රවී ඇති වායව වියළි                                                                                              | නොවී සංතෘප්ත ජලවාෂ්ප පැවතියේ නම්                   |                               |
| V)  |               | _                                                         |                                                                                                                 | රයේම ඇඳ එය $Q$ ලෙස නම් කරන්න.                      | 1                             |

| 3. | අනුනා | දය (  | උපයෝගී කර                   | ගනිමින් ඇදි ක                | ාම්බියක තීර්          | රයක් තරංග                      | වල වේගය                 | s (v) සෙවීම             | සඳහා ඔබ ඡේ             | වත ලබා සිසි       | වක්<br>ා ලියන්න |
|----|-------|-------|-----------------------------|------------------------------|-----------------------|--------------------------------|-------------------------|-------------------------|------------------------|-------------------|-----------------|
|    | දෙන ( | ुंद र | ට්වනිමාන ඇර                 | ටවුමක් (1) රූප               | යේ දැක්වේ             | . සරසුල් ක                     | ාට්ටලයක්                | ද ඔබට සපය               | හ ඇත.                  |                   |                 |
|    |       |       | •                           |                              |                       |                                |                         |                         |                        |                   |                 |
|    |       |       | ]                           | 0                            | 0                     | 0                              | 0                       |                         |                        |                   |                 |
|    |       |       | ı                           |                              |                       |                                |                         |                         |                        |                   |                 |
|    |       |       |                             |                              |                       |                                |                         | ?                       |                        |                   |                 |
|    |       |       |                             |                              | (1)                   | රූපය                           |                         |                         |                        |                   |                 |
|    | (-) - | 00    | (PP P                       | 0 PA J AC                    |                       |                                | 3m m<8                  | ලකියට ල <b>න්ත</b>      | ള തയത് മ?              |                   |                 |
|    | (a) S | 99    | පටකු නෙගෙ <u></u>           | දී කම්බියේ මූලි              | ික අතිතාර             | , omm enc                      | D DO.                   | ಅಅದರ ಅಥವು               | c agom q.              |                   |                 |
|    |       | ••••  |                             |                              |                       |                                |                         |                         |                        |                   |                 |
|    |       |       |                             |                              |                       |                                |                         |                         |                        |                   |                 |
|    | (b) a | ම්බි  | ය මූලික විධි<br>පෙලේ සරිත්ත | යෙන් කම්පනය<br>ා. කඩදාසි ආගෙ | වන අවස්ර<br>රැනකය කැ  | ථාවේ <i>P</i> සෑ<br>බිය යනු මෑ | ග $Q$ සේතු<br>ගැඳඹ ස්ථා | අතර සෑදෙ<br>නය එම රූද   | න තරංග රට:<br>3 සටහනේම | ාව පහත<br>ඊ හිසක් |                 |
|    |       |       |                             | X ලෙස නම් ස                  |                       | <u>H</u>                       | عامرت سام               | ,0,00                   |                        |                   |                 |
|    |       |       |                             |                              |                       |                                |                         |                         |                        |                   |                 |
|    |       |       |                             | $\wedge$                     |                       |                                |                         | $\wedge$                |                        |                   |                 |
|    |       |       |                             |                              |                       |                                |                         |                         | Di                     |                   |                 |
|    |       |       |                             | P                            |                       |                                |                         | Q                       |                        |                   |                 |
|    |       |       |                             |                              | (2                    | 2) රූපය                        |                         |                         |                        |                   |                 |
|    | (c)   | (i)   | ඉහත (b) කෙ                  | තාටසේ සේතු                   | අතර දුර $l$           | සහ යොද                         | ාගත් සරද                | සුලේ සංඛන               | තය $f$ වේ. ධ්          | වනිමාන            |                 |
|    |       |       | කම්බිය තුළින<br>ලියන්න.     | ත් ගමන් කරන                  | තීර්යක් තර            | රංගයේ වේ                       | ගය (v) ස                | ඳහා පුකාශප              | ායක් $l$ හා $f$ $\ell$ | ඇසුරෙන්           |                 |
|    |       |       | Gw2121.                     |                              |                       |                                |                         |                         |                        |                   |                 |
|    | ,     | ::\   |                             | නා සරසුල් කට්ර               |                       |                                | ഷ്മഹരദ്                 | ് കുട്ടാത്രിക്കു        | ් මාන I T−1            | වන පරිදි          |                 |
|    | ,     | (11)  | සංගතාත දනා<br>සරල රේඛීය     | නා සටසුල කට<br>පුස්තාරයක් ඇ  | ථලය යොදැ<br>ඳීමෙන් තර | ) ගතමත, ද<br>රංගයේ වේ          | ඉසසාවයෙ<br>ගය (v) ජෙ    | ායා ගැනීම<br>සායා ගැනීම | සඳහා ඉහත               | (c) (i) &         |                 |
|    |       |       |                             | ැවත සකස් කර                  |                       |                                |                         |                         |                        | (1)               |                 |
|    |       |       |                             |                              |                       |                                |                         |                         |                        |                   |                 |
|    |       |       |                             |                              |                       |                                |                         |                         |                        |                   |                 |
|    | (i    | iii)  | ඉහත (c) (ii)                | හි සඳහන් කරන                 | ා ලද පුස්තා           | රයේ ස්වාය                      | ත්ත හා පර               | රායත්ත වීචල             | ායන් සඳහන්             | කරන්න.            |                 |
|    |       |       | ස්වායත්ත විච                | )ලාය :                       |                       |                                |                         |                         |                        |                   |                 |
|    |       |       | පරායත්ත විච                 |                              |                       |                                |                         |                         |                        |                   |                 |
|    | (     | iv)   |                             | රයේ අනුකුමණ                  |                       |                                |                         |                         |                        | 002, 22)          |                 |
|    | ,     | •     | සහ (0.004, 4                | 42) වේ. මෙහි $l$             |                       |                                |                         |                         |                        |                   |                 |
|    |       |       | ms <sup>–1</sup> වලින්      | සොයන්න.                      |                       |                                |                         |                         |                        |                   |                 |
|    |       |       |                             |                              | •••••                 |                                |                         |                         |                        |                   |                 |
|    |       |       |                             |                              |                       |                                |                         |                         |                        |                   |                 |
|    |       |       |                             |                              |                       |                                |                         |                         |                        |                   |                 |
|    |       |       |                             |                              |                       |                                |                         |                         |                        |                   |                 |
|    |       |       |                             |                              |                       |                                |                         |                         |                        |                   |                 |
|    |       |       |                             |                              |                       |                                |                         |                         |                        | - 1               |                 |

| (d)        | සරසුල්වල ඇති දැතිවල දිග සලකා පළමු පාඨාංකය ලබා ගැනීම සඳහා වඩාත්ම සුදුසු සරසුල කුමක්ද?<br>ඔබගේ පිළිතුරට හේතුව දෙන්න.                                                                            | තීරයේ<br>කිසිවක්<br>නො ලියන්න |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|            | යොදා ගන්නා සරසුල :                                                                                                                                                                            |                               |
|            | හේතුව :                                                                                                                                                                                       |                               |
|            |                                                                                                                                                                                               |                               |
| (e)        | කිසියම් මොහොතක දී සරසුලේ දැති කම්පනය වන දිශාවන් (3) රූපයේ ඊ හිස් මගින් පෙන්වා ඇත. සුදුසු පරිදි ඊ හිසක් යොදා ගනිමින්, එම මොහොතේම සරසුල් බඳේ $(S)$ අංශුන් කම්පනය වන දිශාව එම රූපයේම ඇඳ දක්වන්න. |                               |
|            |                                                                                                                                                                                               | L.                            |
|            | (3) රූපය                                                                                                                                                                                      | ş                             |
| <b>(f)</b> | $1\mathrm{kg}$ , $2\mathrm{kg}$ සහ $3\mathrm{kg}$ ස්කන්ධයන් ධීවනිමාන කම්බිය ඇදීම සඳහා යොදා ගත හැක. මෙම පරීක්ෂණය සඳහා වඩාත් සුදුසු ස්කන්ධය කුමක් ද? ඔබේ තෝරා ගැනීමට හේතුව දක්වන්න.             |                               |
|            | වඩාත් සුදුසු ස්කන්ධය :                                                                                                                                                                        |                               |
|            | හේතුව :                                                                                                                                                                                       |                               |
|            |                                                                                                                                                                                               | 3.                            |
|            | කම්බිය $f$ සංඛාාතයකින් අනුනාද වන්නේ නම්, කඩදාසි ආරෝහකය යන්තමින් විසි වන අවස්ථාවේ කම්බියේ විස්තාරය $(A)$ සඳහා පුකාශනයක් $f$ සහ $g$ ඇසුරෙන් ලියා දක්වන්න.                                       |                               |
|            |                                                                                                                                                                                               |                               |
|            |                                                                                                                                                                                               |                               |
|            | මෙම පරීක්ෂණයේ දී අනුනාද දිග $l$ නිර්ණය කිරීමේ දී සිදුවිය හැකි දෝෂයක් සඳහන් කර එය අවම<br>කර ගැනීමට ඔබ ගන්නා කිුිිිියා මාර්ගය ලියා දක්වන්න.                                                     |                               |
|            | ලදා්ෂය :                                                                                                                                                                                      |                               |
|            | කිුයා මාර්ගය :                                                                                                                                                                                |                               |
|            |                                                                                                                                                                                               |                               |
|            |                                                                                                                                                                                               | ( )                           |
|            | a a                                                                                                                                                                                           | $\bigcup$                     |
|            |                                                                                                                                                                                               |                               |

තීරයේ කිසිවක් නො ලියන්න

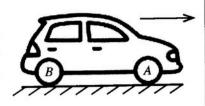


(f) මෙම පරීක්ෂණයේ දී ශිෂායා විසින් අඳින ලද පුස්තාරය පහත දැක්වේ. V (volt) 1.6 1.4 1.2 1.0 0.8 I (mA) 20 40 60 80 100 120 0 (i) සුදුසු ලක්ෂායන් දෙකක් භාවිත කර පුස්තාරයේ අනුකුමණය ගණනය කරන්න. (ii) කෝෂයේ අභාවන්තර පුතිරෝධය r නිර්ණය කරන්න. (iii) කෝෂයේ වී.ගා.බ. E නිර්ණය කරන්න. (i) දෙන ලද කෝෂයෙන් ලබාගත හැකි ලුහුවත් ධාරාව (ඇම්පියර්වලින්) කොපමණ ද? ඔබේ පිළිතුර **(g)** දශමස්ථාන දෙකකට දෙන්න. (ii) අදාළ පුතිරෝධයක් සම්බන්ධ කිරීමෙන් මෙම කෝෂයෙන් ලබාගත හැකි උපරිම ක්ෂමතාවය කොපමණ ද? (h) දෙන ලද කෝෂයේ අගයයන්ට වඩා අඩු වි.ගා.බලයක් සහ අඩු අභාාන්තර පුතිරෝධයක් සහිත නිකල්-කැඩ්මියම් (Ni-Cd) කෝෂයක් සඳහා ඉහත පරීක්ෂණය සිදු කළහොත් බලාපොරොත්තු වන රේඛාවේ දළ සටහනක් ඉහත (f) හි දී ඇති ජාලයේම අඳින්න. \* \*

තියලු ම හිමිකම් ඇවිටිනී / முழுப் பதிப்புநிமையுடையது / All Rights Reserved]

**නව නිඊදේශ**ය/புதிய பாடத்திட்டம்/New Syllabus

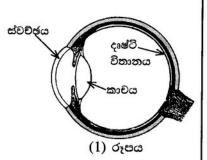
අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020


**භෞතික විදනව** II ධෙයකුනිසඛ්යාහ් II Physics II

 ${f B}$  කොටස - රචනා



පුශ්න **ගතරකට** පමණක් පිළිතුරු සපයන්න.  $(g=10\,\mathrm{m\ s}^{-2})$ 


- ${f 5.}$   ${f (a)}$  ස්කන්ධය  ${f M}$  වූ ඒකාකාර කුට්ටියක් ආරම්භයේ දී රළු තිරස් තලයක් මත නිශ්චලව ඇත. පසුව ශූනායේ සිට කුමයෙන් වැඩිකරනු ලබන තිරස් බලයක්  ${f (P)}$  කුට්ටිය මත යොදනු ලැබේ. ඝර්ෂණ බලය  ${f F}$  ලෙස සලකන්න.
  - (i) ඉහත අවස්ථාව සඳහා කුට්ටියේ නිදහස්-වස්තු රූප සටහනක් ඇඳ සියලුම බල නම් කරන්න.
  - (ii) ආරම්භක අවස්ථාවේ සිට කුට්ටිය ත්වරණයෙන් ගමන් ගන්නා අවස්ථාව තෙක් P ට එදිරිව F පුස්තාරයේ දළ සටහනක් අඳින්න. සීමාකාරී ඝර්ෂණ බලය  $(F_{
    m L})$  හා ගතික ඝර්ෂණ බලය  $(F_{
    m D})$  එම පුස්තාරයේ ලකුණු කරන්න.
  - (iii) සීමාකාරී ඝර්ෂණ සංගුණකය  $\mu_{
    m L}$  සහ ගතික ඝර්ෂණ සංගුණකය  $\mu_{
    m D}$  සඳහා පුකාශන ලියන්න.
  - (b) පෙර-රෝද එළැවුම් (front-wheel drive) මෝටර් රථවල එන්පීම ඇක්සල මගින් පෙර-රෝද දෙකට සම්බන්ධ කර ධාවනය කරවයි. සෘජු තිරස් රඑ තාර පාරක ධාවනය වන, රූපයේ පෙන්වා ඇති පෙර-රෝද එළැවුම් මෝටර් රථයක් සලකන්න. ටයර සහ තාර පාර අතර ඝර්ෂණ සංගුණක පිළිවෙළින්  $\mu_{\rm L}\!=\!0.8$  හා  $\mu_{\rm D}\!=\!0.5$  වේ. වෙනත් ආකාරයකින් සඳහන් කර නොමැති නම් පමණක් පහත ගැටලු විසඳීමේ දී ධාවනය වන මෝටර් රථය මත ඇතිවන සීමාකාරී හෝ ගතික ඝර්ෂණ බල පමණක් සලකන්න.



- (i) මෝටර් රථය තිරස් සෘජු රළු මාර්ගයක ත්වරණයෙන් ගමන් ගන්නා අවස්ථාව රූපයේ පෙන්වා ඇත. A සහ B රෝද ඔබගේ පිළිතුරු පතුයේ පිටපත් කර ඝර්ෂණය නිසා ඉදිරිපස රෝදයක් (A) මත බලය  $F_{\rm A}$  ලෙස ද, පසුපස රෝදයක් (B) මත බලය  $F_{\rm B}$  ලෙස ද ලකුණු කරන්න. එසේම ත්වරණය වන විට  $F_{\rm A}$  හා  $F_{\rm B}$  හි විශාලත්ව සසඳන්න.
- (ii) රියදුරු සමඟ පෙර-රෝද එළැවුම් මෝටර් රථයේ ස්කන්ධය 1200 kg ද, එහි බර රෝද හතර මත සමානව බෙදෙන බව ද සලකන්න. මෙහිදී කි්යාත්මක වන ඝර්ෂණ සංගුණකය නිවැරදිව හඳුනා ගෙන ති්රස් ඍජු පාරේ දී මෝටර් රථයේ උපරිම ආරම්භක එළැවුම් බලය ගණනය කරන්න.
- (iii) මෝටර් රථය තිරස් සෘජු පාරේ  $72~{
  m km}~{
  m h}^{-1}$  ඒකාකාර පුචේගයෙන් ගමන් ගන්නා විට චලිතයට එරෙහි මුළු පුතිරෝධී බලය  $520~{
  m N}$  වේ. එම පුවේගයේ දී මෝටර් රථයේ ජවය (ක්ෂමතාව) සොයන්න.
- (iv) පසුව මෝටර් රථය තිරසට  $12^\circ$  වූ ආනත නැග්මක් සහිත මාර්ගයක ඉහත (b)(iii) හි ජවයෙන්ම ඉහළට ගමන් කරයි. මෙහිදී චලිතයට එරෙහි මුළු පුතිරෝධී බලය  $200~\mathrm{N}$  නම් රථය ඉහළට ගමන් කරන උපරිම පුවේගය සොයන්න.  $\sin{(12^\circ)} = 0.2$  ලෙස ගන්න.
- (v) (I) මෝටර් රථය නැවත තිරස් සෘජු මාර්ගයේ 72 km h<sup>-1</sup> ක ඒකාකාර පුවේගයෙන් ගමන් කරන විට 35 m ක් ඉදිරියේ ඇති බාධකයක් රියදුරු හදිසියේම දුටුවේය. ඔහු ක්ෂණිකව තිරිංග පැඩලය පෑගු විට, රෝද හතර අගුළු වැටී, ටයර පෙරළීමකින් තොරව ලිස්සන ලදී. මෙහිදී කියාත්මක වන ඝර්ෂණ සංගුණකය නිවැරදිව හඳුනා ගෙන අදාළ හේතු සහ ගණනය කිරීම් දෙමින්, මෝටර් රථය බාධකයේ ගැටේ ද නොගැටේ ද යන්න සඳහන් කරන්න. කිරිංග තද කිරීමට පෙර රියදුරුගේ පුතිකියා කාලය නොසලකා හරින්න.
  - (II) තිරිංග යෙදීමේ දී ටයර ලිස්සීම සිදුවුවහොත් මෝටර් රථය පාලනයෙන් තොරව සෘජු රේඛාවක වැඩි දුරක් චලනය වීම නිසා අනතුරු සිදුවිය හැක. ටයර ලිස්සීම වැළැක්වීමට මෝටර් රථවල පුතිඅගුළු තිරිංග පද්ධතියක් (Anti-lock Braking System-ABS) යොදනු ලැබේ. ටයර ලිස්සීම ආරම්භ වන විට එමඟින් ස්වයංකියව තිරිංග නිදහස් කර ටයර නැවත පෙරැළීමට ඉඩ සලසයි. මෙම කියාව තත්පරයකට කිහිපවතාවක් සිදුවන අතර, එනිසා ඇතිවන සඵල ඝර්ෂණ සංගුණකය, සීමාකාරී ඝර්ෂණ සංගුණකයට ආසන්න අගයක් ගනී. මෝටර් රථයට ABS පද්ධතියක් යෙදූ විට සඵල ඝර්ෂණ සංගුණකය 0.75ක් වේ. ඉහත (b)(v)(I) හි සඳහන් අවස්ථාව සඳහා ABS පද්ධතිය යෙදූ මෝටර් රථයේ නව නැවතුම් දුර ගණනය කරන්න.
- (vi) පසුව මෝටර් රථය වකුතා අරය  $18\,\mathrm{m}\,$ වූ තිරස් වෘත්තාකාර මාර්ගයකට පිවිසෙයි. මෙහිදී ද ඝර්ෂණ සංගුණක ඉහත (b) හි අගයන් ම වේ නම්, මෝටර් රථය ලිස්සීමකින් තොරව ආරක්ෂාකාරීව ධාවනය කළ හැකි උපරිම පුවේගය සොයන්න.

6. පහත ඡේදය කියවා පුශ්නවලට පිළිතුරු සපයන්න.

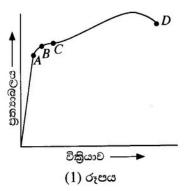
මිනිස් ඇසක හරස්කඩක් (1) රූපයේ පෙන්වා ඇත. ස්වච්ඡ සහ අක්ෂි කාච සංයුක්තය මගින් ආලෝකය දෘෂ්ටි විතානය මතට නාභිගත කරයි. නමුත් වාතය  $(n_a=1)$  සහ ස්වච්ඡය  $(n_c=1\cdot38)$  අතර ඇති වර්තනාංක වෙනස විශාල නිසා ආලෝකය වැඩියෙන්ම වර්තනය වන්නේ වාතයේ සිට ස්වච්ඡය හරහා යෑමේදීය. ස්වච්ඡ කාචය සහ අක්ෂි කාචය පිළිවෙළින් නිශ්චිත නාභි දුරක් සහ විචලා නාභි දුරක් සහිත උත්තල කාච ලෙසට සැලකිය හැක. පුතියෝජක පේශිවල කියාකාරිත්වය මගින් අක්ෂි කාචයේ නාභි දුර වෙනස් කළ හැක. මෙම සංයුක්තය එකිනෙකට ස්පර්ශව පවතින තුනී උත්තල කාච දෙකක් ලෙසට සැලකිය හැක.



අවිදුර දෘෂ්ටිකත්වය සහ දුර දෘෂ්ටිකත්වය යනු පොදු දෘෂ්ටි දෝෂ දෙකකි. සුදුසු කාච භාවිත කිරීම මගින් සාමානායෙන් මෙම දෝෂ නිවැරදි කර ගත හැක. වර්තමානයේ පරිගණක මගින් පාලනය වන පාරජම්බුල (UV) ලේසර් කිරණ මගින් ස්වච්ඡයේ අඩංගු පටක අන්වීක්ෂීය පුමාණවලින් ඉවත් කොට ස්වච්ඡය අලුතින් හැඩ ගැන්වීම මගින් ද මෙම දෝෂ නිවැරදි කළ හැක. මෙම කිුියාවලිය ලැසික් (LASIK) සැත්කමක් ලෙස හැඳින්වේ. මෙහි අරමුණ වන්නේ ඇස් කණ්ණාඩ හෝ සිවි කාච නොමැතිව දෘෂ්ටිය යථාතත්වයට පත් කර ගැනීමයි.

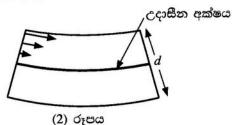
තීරු-කේත (bar-codes) කියවනයන්හි භාවිත වන සන්තතික ලේසර මෙන් නොව මේවා ස්පන්දිත ලේසර (pulsed lasers) වර්ගයට අයත් වේ. මේවා  $10 \, \mathrm{fs} \, (1 \, \mathrm{fs} = 10^{-15} \, \mathrm{s})$  පමණ කාල පුාන්තරයක් සහිත කෙටි ස්පන්ද ආකාරයෙන් ශක්තිය මුදා හරී. පාරජම්බුල ආලෝකයේ අධි තීවුතා ස්පන්ද ස්වච්ඡයේ ඉතා තුනී පටක ස්තරයක් මගින් පමණක් අවශෝෂණය කර ගන්නා නිසා මෙවැනි ලේසර, අක්ෂි සැත්කම් සඳහා භාවිත කිරීම යෝගා වේ. පතනය වන UV ආලෝකය මගින් තුනී පටක ස්තරය කුඩා අණු සහිත වාෂ්පයකට වියෝජනය වී ස්වච්ඡ පෘෂ්ඨයෙන් ඉතා වේගයෙන් ඉවතට විසිවී යන්නේ අසල පිහිටි පටකවලට කිසිදු හානියක් කිරීමට පුමාණවත් ශක්තියක් ඉතිරි නොකරමිනි.

ක්ෂුදු ඉලෙක්ටොනික (microelectronic) උපාංග සහ අර්ධ සන්නායක සංගෘහිත පරිපථ (IC) නිෂ්පාදනය කිරීමේදී ද මෙම වර්ගයේ ස්පන්දිත ලේසර සුලබව භාවිත වේ.

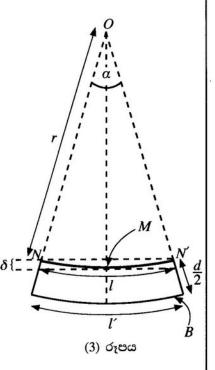

[ඉඟිය: අභිසාරී කාචයක බලය ධන වන අතර එය ඩයොප්ටර (D) වලින් දෙනු ලැබේ.]

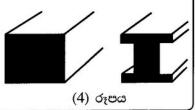
- (a) ඇසට ඇතුළු වන ආලෝකය වැඩියෙන්ම වර්තනය වන්නේ වාත-ස්වච්ඡ අතුරු මුහුණතේ දී ය. මෙයට හේතුව කුමක් ද?
- (b) (i) ස්වච්ඡයට ඇතුළු වන ඒකවර්ණ ආලෝක කි්රණයක පතන කෝණය i සහ වර්තන කෝණය r නම් ස්වච්ඡයේ වර්තනාංකය  $n_{o}$ , සඳහා පුකාශනයක් i සහ r ඇසුරෙන් ලියා දක්වන්න.
  - $({
    m ii})$   $i=30^\circ$  වන විට  $r=21^\circ 14'$  වේ. මෙම අවස්ථාවේ දී කිරණයේ අපගමන කෝණය කොපමණ ද?
- (c) (i) සංයුක්ත කාචයේ සිට දෘෂ්ටී විතානයට සහ ඇසේ අවිදුර ලක්ෂායට ඇති දුර පිළිවෙළින්  $2.5~{
  m cm}$  සහ  $25.0~{
  m cm}$  වේ. අනුරූප කිරණ සටහන් ඇඳ සංයුක්ත කාචයේ අවම සහ උපරිම බලයන් ගණනය කරන්න.
  - (ii) ස්වච්ඡයෙන් සෑදෙන කාචයේ බලය  $+30\,\mathrm{D}$  නම් ඉහත (c) (i) හි සඳහන් කොට ඇති අවස්ථා දෙක සඳහා අනුරූප අක්ෂි කාචයේ බලයන් ගණනය කරන්න.
- (d) (i) පුද්ගලයකුගේ දෝෂ සහිත ඇසක අවිදුර ලක්ෂාය 50 cm වේ. මෙම පුද්ගලයා දෝෂ සහිත ඇසේ සිට 50 cm ඇතින් තබා ඇති පුවත්පතක් කියවන විට ඔහුගේ ඇසේ සංයුක්ත කාචයේ බලය කොපමණ ද?
  - (ii) ස්වච්ඡයෙන් සැදෙන කාචයේ බලය  $+30\,\mathrm{D}$  නම් මෙම අවස්ථාවට අනුරුප අක්ෂි කාචයේ බලය කොපමණ ද?
  - (iii) ඇස් කණ්ණාඩි නොපැළඳ ලැසික් සැත්කමක් මගින් තම දෘෂ්ටිය නිවැරදි කර ගැනීමට පුද්ගලයා තීරණය කරයි නම් අලුතින් හැඩගැස්වූ ස්වච්ඡ කාචයට කොපමණ බලයක් තිබිය යුතු ද?
  - (iv) ලේසර් සැත්කමක් නොකර ඇස් කණ්ණාඩි පැළඳීමට පුද්ගලයා අදහස් කරයි නම් එම පුද්ගලයා පැළඳිය යුතු ඇස් කණ්ණාඩි වර්ගය සහ එහි බලය කුමක් ද?
- (e) අක්ෂි සැත්කම් සඳහා සන්තතික ලේසර වෙනුවට ස්පන්දිත  ${
  m UV}$  ලේසර භාවිත කිරීමේ වාසිය කුමක් ද?
- (f) ලේසර් සැත්කමක දී කෙටි පාරජම්බුල ස්පන්දයක් රෝගියකුගේ ස්වච්ඡය මතට පුක්ෂේපණය කරන ලදී. එය අරය  $0.5~\rm mm$  වන ලපයක් ස්වච්ඡය මත සාදන අතර  $0.55~\rm mJ$  ශක්තියක් ස්වච්ඡ පටකයේ ලපයට ලබා දේ. ස්වච්ඡ පෘෂ්ඨයෙන් ඉවත්වන පටකයේ ඝනකම ගණනය කරන්න. ස්වච්ඡ පටකයේ ආරම්භක උෂ්ණත්වය  $30~\rm ^{\circ}C$  වේ. ඉවත්වන පටකයේ උෂ්ණත්වය  $100~\rm ^{\circ}C$  දක්වා ඉහළ නැග ඉන් පසු තවදුරටත් උෂ්ණත්වය වැඩි නොවී එය වෘෂ්පීකරණය වන බව උපකල්පනය කරන්න. [ස්වච්ඡ පටකවල ඝනත්වය =  $10^3~\rm kg~m^{-3}$ ; ස්වච්ඡ පටකවල විශිෂ්ට තාප ධාරිතාව =  $4.0~\rm \times~10^3~\rm J~kg^{-1}~K^{-1}$  ; ස්වච්ඡ පටකවල වෘෂ්පීකරණයේ විශිෂ්ට ගුප්ත තාපය =  $2.52~\rm \times~10^6~\rm J~kg^{-1}$  ;  $\pi=\frac{22}{7}$  ලෙස ගන්න]
- (g) ස්පන්දිත UV ලේසරයක් මගින් සාදන ලද ස්පන්ද පෙළක් (2) රූපයේ පෙන්වා ඇත. තනි ස්පන්දයක ගබඩා වී ඇති ශක්තිය 20 mJ වේ.
  - (i) තනි ස්පන්දයක පළල 10 fs නම් ලේසර් කදම්බයේ උච්ච ක්ෂමතාව (තනි ස්පන්දයක ක්ෂමනාව) නිර්ණය කරන්න.
  - (ii) ස්පන්ද පුනරාවර්තන ශීඝුතාව 500 Hz නම් ලේසර් කදම්බයේ මධානා ක්ෂමතාව නිර්ණය කරන්න.
- (h) ස්පන්දිත  $\operatorname{UV}$  ලේසරවල වෙනත් භාවිතයක් සඳහන් කරන්න.

(2) රූපය

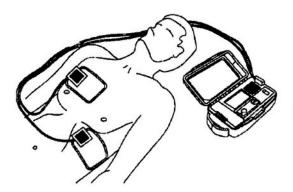

10 fs

- 7. (a) (i) ලෝහ කම්බියක් සඳහා පුතහාබල-විකිුයා වකුය (1) රූපයේ පෙන්වා ඇත. A,B,C සහ D යන ලාක්ෂණික ලක්ෂා හඳුන්වන්න.
  - (ii) කම්බිය C ලක්ෂායෙන් දක්වා ඇති අගය තෙක් ඇද මුදා හරිනු ලැබුවහොත් කම්බියට කුමක් සිදුවේ ද?
  - (iii) පුතෳාබල-විකිුයා වකුයෙන් මායිම්වන වර්ගඑලයෙන් නිරූපණය වන්නේ කුමක් ද?





(b) ගොඩනැගිලි සහ වුහුහයන් ඉදිකිරීමේ දී විශාල භාරයන් දරා ගැනීම සඳහා යකඩ බාල්ක භාවිත කෙරේ. දෙකෙළවරින් රඳවා ඇති සෘජුකෝණාසුාකාර හරස්කඩක් සහිත බාල්කයක් මතට ඒකාකාර ලෙස වාහජ්ත වූ භාරයක් යොදා ඇති විට බාල්කයේ ඉහළ කොටස සම්පීඩනය වී දිගෙන් අඩුවේ. එලෙසම බාල්කයේ පහළ කොටස ඇදී දිගෙන් වැඩිවේ. බාල්කයේ මැද ස්තරයේ දිග නොවෙනස්ව පවතින අතර එය උදාසීන අක්ෂය ලෙසින් හැඳින්වේ.

ඝනකම d වූ යකඩ බාල්කයේ ඉහළ කොටස මත ඇතිවන බලවල වාාාප්තිය (2) රූපයේ නිරූපණය කොට ඇත. රූපය පරිමාණයට ඇඳ නොමැත. මෙම රූපය ඔබගේ පිළිතුරු පතුයේ පිටපත් කර බාල්කයේ පහළ කොටසේ ඇතිවන බල වාාාප්තිය ඇඳ දක්වන්න.




- (c) (2) රූපයේ ඇති බාල්කයේ පහළ කොටස (3) රූපයෙන් පෙන්වා ඇත. උදාසීන අක්ෂයේ වකුතා අරය r වන අතර එය O කේන්දුයෙහි a කෝණයක් (රේඩියන වලින්) ආපාතනය කරයි. බාල්කයේ ඇති උදාසීන අක්ෂයේ දිග l වේ.
  - (i) l සඳහා පුකාශනයක් r සහ lpha ඇසුරෙන් ලියා දක්වන්න.
  - (ii) l' සඳහා පුකාශනයක් r, d සහ a ඇසුරෙන් ලියා දක්වන්න. මෙහි l' යනු බාල්කයේ පහළ කොටසේ පතුලේ පිහිටි ස්තරයේ (B) දිග වේ.
  - (iii) බාල්කයේ පහළ කොටස මත පවතින විකිුයාවේ සාමානz (average) අගය  $\frac{d}{dr}$  මගින් ලබාදෙන බව පෙන්වන්න.
- (d) (i) උදාසීන අක්ෂය (NN') ඔස්සේ කිුයා කරන බලය කොපමණ ද?
  - (ii) බාල්කයේ පහළ කොටස මත කිුයා කරන ආතනා බලයේ සාමානා (average) අගය F නම් පහළ කොටසේ පතුලේ පිහිටි ස්තරය (B) ඔස්සේ කිුයා කරන බලය කොපමණ ද?
  - (iii) බාල්කයේ පළල w සහ යකඩවල යං මාපාංකය Y නම් F බලය  $F=rac{wd^2Y}{8r}$  මගින් ලබා දෙන බව පෙන්වත්න.
  - (iv) බාල්කයේ පහළ කොටස  $1\cdot 0 \times 10^8~{
    m N~m^{-2}}$  වූ සාමානා අාතනා පුතාාබලයකට යටත්ව ඇතිවිට r අරයේ අගය නිර්ණය කරන්න. යකඩවල යං මාපාංකය  $Y=2\cdot 0 \times 10^{11}~{
    m N~m^{-2}}$  ;  $d=20~{
    m cm}$ .
  - (v)  $l=5\cdot0$  m නම්  $\alpha$  හි අගය රේඩියනවලින් නිර්ණය කරන්න.
  - (vi)  $\cos(\frac{\alpha}{2}) = 0.9997$  ලෙස සලකමින් බාල්කයේ උදාසීන අක්ෂයේ මධා ලක්ෂායේ (M) පාතනය  $\delta$  ගණනය කරන්න.
- (e) යකඩවලින් සාදා ඇති සෘජුකෝණාස්‍‍රාකාර බාල්කයක් සහ I (හෝ H) -හැඩය ඇති බාල්කයක් (4) රූපයේ පෙන්වා ඇත. ඉදිකිරීම් ක්ෂේතයේ දී සෘජුකෝණාස්‍රාකාර බාල්ක වෙනුවට සාමානෲයෙන් භාවිත කරන්නේ I-හැඩය ඇති බාල්කයන්ය. හේතු දක්වමින් මෙහි ඇති වාසිය සඳහන් කරන්න.



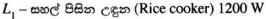


8. ඩිෆිබුලේටරය (defibrillator) යනු වෛදා උපකරණයක් වන අතර එය හෘදයාබාධයකින් හදවත අකර්මණා වූ රෝගියකුගේ හදවතේ රිද්මයානුකූල රටාව නැවත යථා තත්වයට ගෙන ඒම සඳහා භාවිත කරනු ලබයි. මෙම උපකරණයේ ඇති ආරෝපිත ධාරිතුකයක් ඉතාමත් කෙටි කාලයක දී විසර්ජනය කර එතුළ ගබඩා වී ඇති ආරෝපණ, උපකරණයට සම්බන්ධකර ඇති ඉලෙක්ටෝඩ කට්ටලයක් මගින් අධි ශක්ති විදුපුත් කම්පනයක් ලෙස රෝගියාගේ පපුව හරහා හදවතට ලබා දෙයි.



- (a) ඩිෆිබුලේටරයක් තුළ ආරම්භයේ  $400~{
  m V}$  විභව අන්තරයකට ආරෝපණය කොට ඇති ධාරිතුකයක් විසර්ජනය කිරීමෙන් හෘද රෝගියකුට  $48~{
  m J}$  ශක්ති පුමාණයක් ලබාදෙයි.
  - (i) ධාරිතුකයක ගබඩා වී ඇති ශක්තිය W සඳහා පුකාශනයක් එහි ධාරණාව C සහ ධාරිතුකය හරහා පවතින විභව අන්තරය V ඇසුරින් වාුුත්පන්න කරන්න.
  - (ii) උපකරණයේ ඇති ධාරිතුකයේ ධාරණාව කොපමණ ද?
  - (iii) ධාරිතුකය තුළ ගබඩා වී තිබූ ආරෝපණ පුමාණය ගණනය කරන්න.
  - (iv) ඉහත (iii) කොටසේ දී ගණනය කරන ලද සම්පූර්ණ ආරෝපණ පුමාණය 12 ms කාලයක දී නියත ධාරාවක් ශරීරයට යැවීමට පුමාණවත් වූයේ යැයි උපකල්පනය කර එම නියත ධාරාව ගණනය කරන්න.
  - (v) ඉහත (a) (iv) හි ගණනය කළ ධාරාව ගමන් කරන ලද මාර්ගයේ සඵල පුතිරෝධය කොපමණ ද?
- (b) (i) සමාන්තර තහඩු ධාරිතුකයක් පාරවිදාුත් නියතය k වූ මාධානයකින් පුරවා ඇත. ගවුස්ගේ නියමය භාවිත කරමින් මාධානය තුළ විදාුත් ක්ෂේතු තීවුතාවය E සඳහා පුකාශනයක් ධාරිතුකයේ ගබඩා වී ඇති ආරෝපණය Q, තහඩු වර්ගඵලය A, නිදහස් අවකාශයේ පාරවේදානතාව  $\mathcal{E}_0$  සහ k ඇසුරෙන් ලබාගන්න.
  - (ii) ඉහත (a) කොටසෙහි සඳහන් ආරෝපිත ධාරිතුකය පාරවිදුහුත් නියතය k=5000 වන මාධා‍යයින් පිරී තිබෙන තහඩු වර්ගඵලය  $80~{\rm cm}^2$ වූ සමාන්තර තහඩු ධාරිතුකයක් නම් මාධාුයේ විදුසුත් ක්ෂේතු තීවුතාවයේ අගය කොපමණ ද? නිදහස් අවකාශයේ පාරවේදාපතාව  $\mathcal{E}_0=9\cdot 0\times 10^{-12}\,{\rm F\,m}^{-1}$  වේ.
  - (iii) මෙම ධාරිතුකයේ තහඩු අතර පරතරය d නිර්ණය කරන්න.
- (c) (i) රෝගියා මත පදනම්ව නියමිත ශක්තියකින් යුතු විදයුත් ස්පන්දයක් මගින් සුදුසු කම්පනයක් ලබාදීම සඳහා එක් ධාරිතුකයක් වෙනුවට එක් එක් ධාරිතුකයක් හරහා  $400\,\mathrm{V}$  ට සමාන විභව අන්තරයක් සහිතව ඉහත (a) කොටසේ සඳහන් කරන ලද ධාරිතුක පහක් එකිනෙකට ශේණිගතව සම්බන්ධ කර ඇත. මෙසේ ධාරිතුක පහක් එකිනෙකට ශේණිගතව සම්බන්ධ කර් ඇත. මෙසේ ධාරිතුක පහක් එකිනෙකට ශේණිගතව සම්බන්ධ කිරීමෙන් පසුව රෝගියකුට ලබාදිය හැකි උපරිම ශක්ති පුමාණය ගණනය කරන්න.
  - (ii) ඉහත (a) කොටසේ සඳහන් කරන ලද වර්ගයේ සමාන ධාරණාවෙන් යුතු ධාරිතුක පහක් 400~V විභව අන්තරයක් යටතේ සමාන්තරගතව සම්බන්ධ කළහොත් රෝගියකුට සැපයිය හැකි උපරිම ශක්ති පුමාණය කොපමණ ද?
  - (iii) ඉහත (c) (i) සහ (c) (ii) හි සඳහන් කර ඇති ශ්‍රේණිගතව සහ සමාන්තරගතව සම්බන්ධ කරන ලද ධාරිතුක අතුරින් ඉහත ඩිෆිබුලේටරය සඳහා ශ්‍රේණිගත සම්බන්ධතාවය සුදුසු යැයි නිර්දේශ කර ඇත. හේතු දක්වමින් මෙය කෙටියෙන් පැහැදිලි කරන්න.
- (d) (i) තුඩු හෝ රස් වළලු (corona) විසර්ජන කිුියාවලිය සඳහා බලපාන සාධක ලියන්න.
  - (ii) ඉහත (b) (ii) හි සඳහන් මාධායෙහි බිඳවැටීමේ විදාුත් ක්ෂේතු තීවුතාවය (break down electric field intensity)  $8.0 \times 10^8 \, \mathrm{V m}^{-1}$  නම්, මෙම ධාරිතුකයට හානි සිදු වේ ද? හේතු දක්වන්න.
- (e) ඉහත (b) හි සඳහන් ධාරිතුකයට ආරම්භයේ දී  $Q_0$  ආරෝපණ පුමාණයක් ඇති අතර එහි විභව අන්තරයේ අගය  $V_0$  වේ.  $12~{
  m ms}$  කට පසුව ඇති ආරෝපණ පුමාණය සහ විභව අන්තරය පිළිවෙළින්  $0.37Q_0$  සහ  $0.37V_0$  නම් මෙම කාලාන්තරය තුළ දී ධාරිතුකයේ ගබඩා වී ඇති ශක්ති පුමාණයෙන් කොපමණ පුතිශතයක් රෝගියාට නිදහස් කර තිබේ ද?  $[(0.37)^2=0.14$  ලෙස ගන්න]

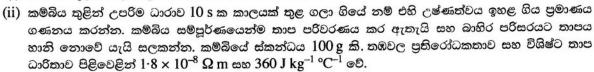
# ${f 9.}\,\,\,({f A})$ කොටසට හෝ $({f B})$ කොටසට හෝ පමණක් පිළිතුරු සපයන්න.


### (A) කොටස

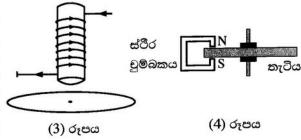
- (a) (i) R පුතිරෝධයක් හරහා I සරල ධාරාවක් (d.c.) t කාලයක් තුළ ගලා යාමේ දී උත්සර්ජනය වන ශක්තිය සඳහා පුකාශනයක් ලියන්න.
  - (ii) සයිනාකාර පුතාාවර්ත වෝල්ටීයතාවයක් V, කාලය t සමඟ වීචලනය වන ආකාරය (1) රූපයේ දැක්වේ. වර්ග මධානො මූල වෝල්ටීයතාව  $V_{
    m rms}$  සඳහා පුකාශනයක් උච්ච වෝල්ටීයතාවය  $V_{
    m p}$  ඇසුරින් ලියන්න.
  - (iii) (1) රූපයේ පෙන්වා ඇති A,B,C හා D රේඛා ඇසුරින් පිළිවෙළින්  $V_{
    m p}$  හා  $V_{
    m rms}$  නිරූපණය වන්නේ කුමන රේඛා මගින් ද?



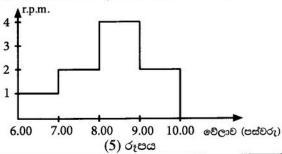
- (v) ඉහත (a) (i) හි ශක්ති උත්සර්ජනය සඳහා ලබාගත් පුකාශනය පුතාාවර්ත ධාරා සඳහා නැවත සකස් කර ලියන්න.
- (b) පුතාහාවර්ත ජව සැපයුමකට සම්බන්ධ කරන ලද විදාුුත් පරිපථයක කොටසක් (2) රූපයේ දැක්වේ.

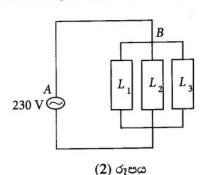

හරස්කඩ ක්ෂේතුඵලය  $1~\mathrm{mm}^2$  හා දිග  $10~\mathrm{m}$  වූ AB තඹ කම්බියක් මගින් පහත විදයුත් උපකරණ  $230~\mathrm{V}$  වූ පුදානයට සම්බන්ධ කර ඇත. AB හරහා ඇතිවන විභව බැස්ම නොසලකා හැරිය හැකි තරම් කුඩා යැයි සලකන්න.




 $L_{
m 2}$  – ශීතකරණය  $300~{
m W}$ 

 $L_{
m 2}$  – විදුලි කේතලය  $800~{
m W}$ 

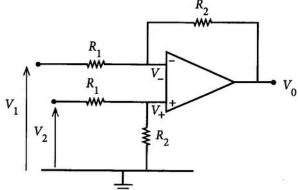

(i) කම්බිය තුළින් ගලන උපරිම ධාරාව ගණනය කරන්න.



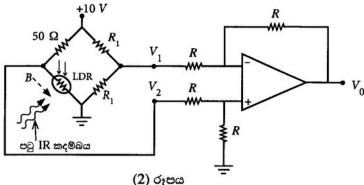

- (iii) අධි ධාරා ගලා යන අවස්ථාවල දී තනි තඹ කම්බියක් වෙනුවට කම්බි කිහිපයක් සමාන්තරව එකතු කොට සාදන ලද සංයුක්ත කම්බියක් භාවිත කරයි. මෙම සැකැස්ම තාප උත්සර්ජනය අවම කරන්නේ කෙසේ දැයි පැහැදිලි කරන්න.
- (c) විදුලි මීටරයක් මගින් විදාපුත් ශක්ති පරිභෝජන පුමාණය kW h වලින් මනිනු ලබයි. එහි ඇති තුනී ඇලුමිනියම් තැටිය භුමණය කරවීම සඳහා සුළි ධාරා යොදා ගනී. ඇලුමිනියම් තැටිය භුමණය වන වට ගණන විදාපුත් ශක්ති පරිභෝජනයට අනුලෝමව සමානුපාතික වේ.
  - (i) (3) රූපයේ දැක්වෙන පරිදි තැටියේ තලයට ලම්බකව සිරස්ව ඉහළින් පරිනාලිකාවක් තබා ඇත. රූපයේ දක්වා ඇති දිශාවට අනුව පරිනාලිකාව තුළින් ගලා යන ධාරාව වැඩි වේ යැයි සලකන්න. (3) රූපය පිළිතුරු පතුයට පිටපත් කර පරිනාලිකාව තුළින් ගලා යන ධාරාව නිසා ඇති වන චුම්බක සුාව රේඛා සහ තැටිය මත ඇතිවන සුළි ධාරා ඒවායේ දිශාවන් දක්වමින් අඳින්න.



- (ii) විදුලි පරිභෝජනය නතර වූ පසු තැටියේ ඇති නිදහස් භුමණ නතර කිරීම සඳහා ස්ථීර චුම්බකයක් යොදා ඇති ආකාරය (4) රූපයේ දැක්වේ. තැටියේ මන්දනය සිදුවන ආකාරය පැහැදිලි කරන්න.
- (d) එක්තරා නිවසක කිසියම් දිනයක දී පස්වරු 6.00 සිට පස්වරු 10.00 අතර කාලයේ දී තැටිය මිනිත්තුවකට කැරකෙන වට ගණන (r.p.m.) මනිනු ලැබේ. එහි සිදුවූ විචලනය (5) රූපයේ දැක්වේ. විදුලි මීටරය කුමාංකනය කර ඇත්තේ හුමණ 500ක්  $1~{\rm kW}~h$ ට සමක වන පරිදිය.  ${\bf A}^{\rm r.p.m.}$ 
  - (i) පස්වරු 8.30 දී විදුපුත් ක්ෂමතා පරිභෝජනය ගණනය කරන්න.
  - (ii) පස්වරු 7.00 සිට පස්වරු 9.00 දක්වා විදුලි ඒකකයක මිල එක් kW h යකට රු. 40.00 ලෙසත් අනෙකුත් වේලාවන් සඳහා එක් kW h යකට රු. 10.00 ලෙසත් වේ නම්, පස්වරු 6.00 සිට පස්වරු 10.00 දක්වා කාලය තුළ දී අයවිය යුතු මුළු මුදල ගණනය කරන්න.



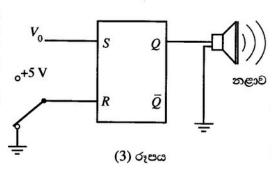




(1) රූපය

### (B) කොටස

- (a) සෘණ පුතිපෝෂණ විධියේ කිුයාත්මක වන පරිපූර්ණ කාරකාත්මක වර්ධකයකට (op amp) අදාළ 'ස්වර්ණමය නීති' (golden rules) ලියා දක්වන්න.
- (b) (1) රූපයේ පෙන්වා ඇති කාරකාත්මක වර්ධක පරිපථය  $V_2$  සහ  $V_1$  පුදාන චෝල්ටීයතා අතර ඇති අන්තරය වර්ධනය කරන නිසා එය 'ආන්තරික වර්ධකයක්' (differential amplifier) ලෙසට හැඳින්වේ.  $V_+$  සහ  $V_-$  යනු පිළිවෙළින් කාරකාත්මක වර්ධක පරිපථයේ අපවර්තන නොවන සහ අපවර්තන පුදානවල චෝල්ටීයතා වන අතර  $V_0$  යනු වර්ධකයේ පුතිදාන චෝල්ටීයතාවයයි.



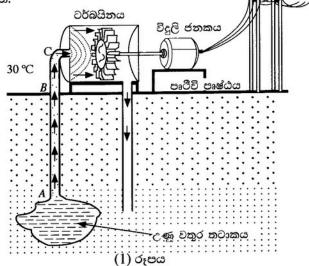

- (i)  $V_{+}$  සඳහා පුකාශනයක්  $V_{2},R_{1}$  සහ  $R_{2}$  ඇසුරෙන් ලියා දක්වන්න.
- (1) රූපය
- $(ii)\ V_{\perp}$  සඳහා පුකාශනයක්  $V_2,R_1$  සහ  $R_2$  ඇසුරෙන් ලියා දක්වන්න.
- (iii)  $V_0$  සඳහා පුකාශනයක්  $V_1, V_2, R_1$  සහ  $R_2$  ඇසුරෙන් වපුත්පන්න කරන්න.
- (iv)  $R_1 = R_2 = R$  නම්  $V_0$  සඳහා පුකාශනයක් අපෝහනය කරන්න.
- (c) සොරෙකු ඇතුළුවීම දනවන අනතුරු ඇඟවීමේ නළාවක් කිුයාත්මක කිරීම සඳහා ඉහත (1) රූපයේ පරිපථය විකරණය කළ හැක. එම විකරණය කරන ලද පරිපථය (2) රූපයේ පෙන්වා ඇත. සේතු පරිපථයේ දකුණු බාහුව එක සමාන  $R_1$  පුතිරෝධවලින් යුතු පුතිරෝධක දෙකකින් ද වම් බාහුව  $50~\Omega$  පුතිරෝධකයකින් හා අධෝරක්ත (IR) ආලෝකයට සංවේදී පුතිරෝධකයකින් (LDR) සමන්විත වේ. පටු IR කදම්බයක් LDR එක මතට නොනවත්වා පතනය වීමට සලස්වා ඇත. සොරෙකු (B) ගොඩනැගිල්ලට ඇතුළු වූ විට ඔහු LDR මතට වැටෙන IR කදම්බය අවහිර කරයි.



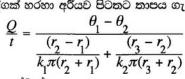
- (i) LDR එක මතට IR කදම්බය පතනය වන විට එහි පුතිරෝධය  $50~\Omega$  වේ. මෙවිට  $V_1,V_2$  සහ  $V_0$  හි අනුරූප අගයන් නිර්ණය කරන්න.
- (ii) සොරා මගින් IR කදම්බය අවහිර කරන විට LDR හි පුතිරෝධය  $10^6\,\Omega$  දක්වා ඉහළ යයි. මෙම අවස්ථාවේ දී  $V_1,V_2$  සහ  $V_0$  හි අනුරූප අගයන් නිර්ණය කරන්න.
- (d) (i) දැන් (3) රූපයේ පෙන්වා ඇති පරිදි op-amp හි  $V_0$  පුතිදානය S-R පිළි-පොළක S පුදානයට සම්බන්ධ කරනු ලැබේ. R පුදානය දෙමං ස්වීචයක් හරහා භූගත කොට ඇත. Q=1 වූ විට අනතුරු ඇඟවීමේ නළාව කිුිිියාත්මක විය යුතුය.

පහත දැක්වෙන අවස්ථා දෙක සඳහා S සහ R හි පුදාන තාර්කික මට්ටම් ලියා දක්වන්න.

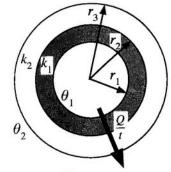
- (1) LDR එක මතට IR කදම්බය පතනය වන විට
- (2) සොරා මගින් IR කදම්බය අවහිර වන විට
- (ii) S-R පිළි-පොළක සතානා වගුව ලියා දක්වන්න.
- (iii) සොරා මගින් IR කදම්බය අවහිර වන විට අනතුරු ඇඟවීමේ නළාව නාද වන බව පෙන්වන්න.
- (iv) මෙම අවස්ථාවේ දී පිළි-පොළක් භාවිත කිරීම යෝගා වන්නේ ඇයි දැයි පහදා දෙන්න.
- (v) පසුව, නළාව නාද වීම නැවැත්විය යුතුය. මෙය සාක්ෂාත් කරගන්නේ කෙසේ ද? ඔබගේ පිළිතුරට හේතු දෙන්න.




# ${f 10.}\ ({f A})$ කොටසට හෝ $({f B})$ කොටසට හෝ පමණක් පිළිතුරු සපයන්න.


### (A) කොටස

භූ තාපජ ශක්තිය යනු පෘථිවිය තුළ ඇති 'රත් තැන්' (hot spots) ලෙස හඳුන්වන උණුසුම් පුදේශවල සිරවී ඇති තාප ශක්තියයි. භූගත ජලය 'රත් තැන්' සමඟ ස්පර්ශ වන විට අධිතාපන ජලය ජනනය වන අතර ඒවා අධි පීඩනයක් යටතේ උණු වතුර තටාක ලෙස පාෂාණ අතර සිරවී පවතී.

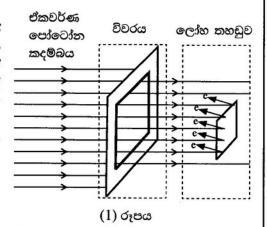

(a) පරිමාව  $1.0 \times 10^8 \,\mathrm{m}^3$  ක් වූ  $200 \,^{\circ}\mathrm{C}$  උෂ්ණත්වයක් යටතේ අධි පීඩනයේ පවතින භූගත උණු වතුර තටාකයක් 'රත් තැන්' කලාපයක (hot spot region) පවතී. උණු වතුර තටාකය දක්වා පොළොව සිදුරු කර (1) රූපයේ දැක්වෙන පරිදි (පරිමාණයට නොවේ) හුමාලය සිරස් සිලින්ඩරාකාර නළයක් හරහා ටර්බයිනයකට යාමට සලස්වනු ලැබේ. අධි තාපනය වූ ජලයේ 200 °C සිට 100 °C දක්වා මධානා විශිෂ්ට තාප ධාරිතාවය සහ මධානා සනන්වය පිළිවෙළින්  $4.5 \times 10^3 \, \mathrm{J \, kg^{-1} \, K^{-1}}$  සහ  $900 \, \mathrm{kg} \, \mathrm{m}^{-3}$  යැයි උපකල්පනය කරන්න.



- $({f i})$  විශිෂ්ට තාප ධාරිතාවය c සහ ස්කන්ධය m වූ වස්තුවක උෂ්ණත්වය  $\Delta heta$  වලින් අඩුකළ විට එම වස්තුව මගින් පිටකරන තාපය  $\Delta Q$  සඳහා සමීකරණයක් ලියන්න.
- (ii) තටාකයේ ඇති අධි තාපනය වූ  $200~^{\circ}\mathrm{C}$  ජලය, ජලයේ තාපාංකය ( $100~^{\circ}\mathrm{C}$ ) දක්වා අඩුකළ විට අධි තාපනය වූ ජලය මගින් නිකුත් වන තාප පුමාණය ගණනය කරන්න. නළය තටාකයට ඇතුළු කළ පසුව, වායුගෝලීය පීඩනයේ දී අධිතාපනය වූ ජලයේ උෂ්ණත්වය  $100\,^{\circ}\mathrm{C}$  දක්වා පහත වැටේ යැයි උපකල්පනය කරන්න.
- (iii) ඉහත (a)(ii) හි ගණනය කළ අධි තාපනය වූ ජලය මුදා හරින ලද ශක්තිය භාවිතයෙන් නිපදවිය හැකි හුමාලයේ මුළු ස්කන්ධය ගණනය කරන්න. ජලයේ වාෂ්පීකරණයේ විශිෂ්ට ගුප්ත තාපය  $2\cdot 5 imes 10^6 
  m J\,kg^{-1}$  වේ.
- (b) පිළිවෙළින් ඇතුළත අරය  $r_{_1}$  සහ පිටත අරය  $r_{_2}$  වූ තාප සන්නායකතාවය  $k_{_1}$ වන ලෝහයකින් සෑදු සිලින්ඩරාකාර නළයක් තාප සන්නායකතාවය  $k_{j}$  වන ඝනකම් පරිවාරක දුවායකින් ආවරණය කර ඇත. සංයුක්ත නළයේ පිටත අරය  $r_{_3}$  වේ. නළයේ හරස්කඩක් (2) රූපයේ දැක්වේ. අනවරත අවස්ථාවේ දී නළයේ අභාහන්තර සහ බාහිර උෂ්ණත්වයන් පිළිවෙළින්  $heta_1$  සහ  $heta_2( heta_1> heta_2)$  වේ. සංයුක්ත නළයේ ඒකීය දිගක් හරහා අරීයව පිටතට තාපය ගැලීමේ ශීඝුතාවය  $rac{\mathcal{Q}}{\mathcal{Q}}$



මගින් ලබා දෙන බව පෙන්වන්න.




- (c) භූ තාපජ විදුලි බලාගාර විදුලිය නිපදවන්නේ භූ තාපජ ශක්තිය භාවිතයෙනි. ඉහත (a) හි භූගත තටාකයෙන් ලබා ගන්නා  $100\,^{\circ}\mathrm{C}$  ඇති හුමාලය පිළිවෙළින් ඇතුළත අරය  $48~\mathrm{cm}$  සහ පිටත අරය  $52~\mathrm{cm}$  වූ සිලින්ඩරාකාර ලෝහ නළයක් හරහා ටර්බයිනයට සපයනු ලැබේ. මෙම නළය ඝනකම  $6~{
  m cm}$  වූ පරිවාරක දුවාඃයකින් ආවරණය කර ඇත. ලෝහයේ සහ පරිවාරක දුවායෙහි තාප සන්නායකතාවයන් පිළිවෙළින්  $100~
  m W~m^{-1}~K^{-1}$  සහ  $rac{2}{\cdot \cdot}~
  m W~m^{-1}~K^{-1}$  වේ.
  - (i) පරිසරයේ සාමානාz උෂ්ණත්වය  $30\,^{\circ}\mathrm{C}$  නම්, අනවරත අවස්ථාවේ දී B සහ C අතර ඇති ත්ළයේ ඒකීය දිගක ඇති  $100~^{\circ}\mathrm{C}$  හුමාලය මගින් පරිසරයට සිදුවන තාපය හානිවීමේ ශීඝුතාවය ගණනය කරන්න.  $\pi = 3$  ලෙස සලකන්න. ගණනය කිරීමේ දී  $10^{-1}$  පදය හා සසඳන විට  $10^{-4}$  අඩංගු පදය නොසලකා හරින්න.
  - (ii) පෘථිවි පෘෂ්ඨයේ සිට ටර්බයිනය දක්වා ඇති නළයේ (B හා C අතර) දිග  $500\,\mathrm{m}$  නම් B සිට C දක්වා හුමාලය මගින් පරිසරයට සිදුවන තාපය හානිවීමේ ශීඝුතාවය ගණනය කරන්න.
  - $( ext{iii})$  පෘථිවිය තුළ (A සිට B දක්වා ) ඒකීය දිගක තාපය හානිවීමේ ශීඝුතාවය B සිට C දක්වා ඒකීය දිගක තාපය හානිවීමේ ශීඝුතාවය මෙන් හරි අඩක් යැයි උපකල්පනය කරන්න.  $\emph{AB}$  හි දිග  $2\,\mathrm{km}$  කි. සම්පූර්ණ නළයෙන්ම (A සිට C දක්වා) සිදුවන මුළු තාපය හානිවීමේ ශීඝුතාවය ගණනය කරන්න.
  - $({
    m i} {
    m v})$  හුමාලය භාවිත කරමින් ටර්බයිනය  $8{\cdot}58$  MW ක යාන්තිුක ක්ෂමතාවක් (පුතිදාන ක්ෂමතාවක්) නිපදවයි. ටර්බයිනයේ යාන්තුික කාර්යක්ෂමතාවය 40% නම්, හුමාලය මගින් ටර්බයිනයට ලබාදෙන පුදාන ක්ෂමතාව ගණනය කරන්න.
  - $({f v})$  ඉහත (a)  $({f i})$  හි ගණනය කරන ලද අධි තාපන ජලය මගින් මුදා හැරෙන තාප ශක්තිය මගින් මෙම භු තාපජ බලාගාරය කොපමණ වසර ගණනක් කිුයාත්මක කළ හැකි ද? (වසර  $1=3 imes 10^7~{
    m s}$  ලෙස ගන්න)

### (B) කොටස

ඒකවර්ණකාරකයක් (monochromator) යනු පුකාශ උපකරණයක් වන අතර එය ඒකවර්ණ පෝටෝන කදම්බයක් නිපදවීමට භාවිත කළ හැක. පුකාශ විදුහුත් පරීක්ෂණයක දී ඒකවර්ණකාරකය විසින් නිපදවන ඒකවර්ණ පෝටෝන කදම්බය (1) රූපයේ දැක්වෙන පරිදි සෘජුකෝණාසාකාර විවරයක් හරහා ගමන් කොට රික්ත කුටීරයක තබා ඇති ලෝහ තහඩුවක් මත ලම්බකව පතිත වේ.

ආරම්භයේ දී, ඒකවර්ණකාරකය තරංග ආයාමය 100 nm වන පෝටෝන කදම්බයක් නිපදවයි.



අදාළ සියලු ගුණනයන් සඳහා  $hc=1240~{
m eV}$  nm ලෙස ගන්න. මෙහි h යනු ප්ලාන්ක් නියතය වන අතර c යනු ආලෝකයේ වේගය වේ.

- (a) (i) විදාහුත් චුම්බක වර්ණාවලියෙහි 100 nm තරංග ආයාමය අයිතිවන පුදේශයෙහි නම කුමක් ද?
  - (ii) 100 nm පෝටෝනයකට අදාළ ශක්තිය eV වලින් ගණනය කරන්න.
  - (iii) තරංග-අංශු ද්වෛතය සැලකිල්ලට ගනිමින්, ඉහත ශක්තිය ඇති පෝටෝනයක ගමාතාවය ගණනය කරන්න. ( $h=6.6\times10^{-34}\,\mathrm{J\,s}$ )
- (b) (i) එක් එක් පෝටෝනයක ශක්තිය E වන පෝටෝන n සංඛාාවක් සහිත සමාන්තර ඒකවර්ණ පෝටෝන කදම්බයක් A වර්ගඵලයක් හරහා t කාලයක් තුළ ගමන් කිරීමේ දී එහි තීවුතාවය I (ඒකක වර්ගඵලයක් හරහා ඒකක කාලයක දී ගලායන ශක්තිය) සඳහා පුකාශනයක් වුහුත්පන්න කරන්න.
  - (ii) ඉහත (1) රූපයේ පෙන්වා ඇති  $100\,\mathrm{nm}$  ඒකවර්ණ කදම්බයේ තීවුතාවය  $9\cdot 92\, imes 10^{-8}\,\mathrm{W\,m^{-2}}$  නම් සහ සෘජුකෝණාසුකාර විවරයෙහි වර්ගඵලය  $3\,\mathrm{mm} \times 4\,\mathrm{mm}$  නම්, ඒකක කාලයක දී මෙම විවරය හරහා ගමන් කරන පෝටෝන සංඛ්‍යාව කොපමණ ද?  $(1\,\mathrm{eV} = 1\cdot 6\times 10^{-19}\,\mathrm{J})$
  - (iii) පෙන්වා ඇති ලෝහ තහඩුව වර්ගඵලය 2 mm × 2 mm වන රිදී තහඩුවක් නම්, පතිත වන සෑම පෝටෝනයක්ම එක් පුකාශ ඉලෙක්ටුෝනයක් විමෝචනය කරන බව උපකල්පනය කරමින්, රිදී තහඩුවෙන් ඒකක කාලයක දී විමෝචනය වන පුකාශ ඉලෙක්ටුෝන සංඛ්‍යාව ගණනය කරන්න.
- (c) (i) මෙම පරීක්ෂණය සඳහා භාවිත කළ රිදී තහඩුවේ කාර්ය ශුිතය  $4\cdot 0$  eV වේ. විමෝචනය වන පුකාශ ඉලෙක්ටෝනවල අවම හා උපරිම චාලක ශක්ති අගයන් eV වලින් සොයන්න.
  - (ii)  $50 \, \mathrm{nm}$  බැගින් වූ වැඩිවීම්වලින් යුක්තව $100 \, \mathrm{nm}$  සිට  $500 \, \mathrm{nm}$  දක්වා තරංග ආයාම සහිත පෝටෝන කදම්බ නිපදවීම සඳහා ඒකවර්ණකාරකය සකස් කර ඒ සෑම තරංග ආයාමයකදීම රිදී තහඩුවෙන් වීමෝචනය වන පුකාශ ඉලෙක්ටෝනවල උපරිම චාලක ශක්තිය  $(K_{\mathrm{max}})$ මනිනු ලබයි. පෝටෝන කදම්බයේ තරංග ආයාමය සමඟ  $K_{\mathrm{max}}$  හි වීචලනය (2) රූපයේ දැක්වේ. A හා B ලක්ෂායන්හි අනුරූප අගයන් මොනවා ද?
  - (iii) කාර්ය ශිතය 5·0 eV වන රන් තහඩුවක් සඳහා ඉහත සඳහන් පරීක්ෂණය නැවත සිදු කරයි. (2) රූපයේ පුස්තාරය ඔබේ පිළිතුරු පතුයේ පිටපත් කර රන් තහඩුව සඳහා අනුරූප වකුය එම පුස්තාරයේම පැහැදිලිව ඇඳ දක්වන්න.
  - (iv) තරංග ආයාමය  $200~{\rm nm}$  වූ එකම පෝටෝන කදම්බයක් තහඩු දෙක මත වෙන වෙනම පතිත කරනු ලබයි.  $\delta \xi$  හා රන් තහඩු සඳහා මනිනු ලබන පුකාශ ධාරා පිළිවෙළින්  $i_{\rm S}$  සහ  $i_{\rm g}$  වේ.  $i_{\rm g}=i_{\rm S}$ ,  $i_{\rm g}>i_{\rm S}$  සහ  $i_{\rm g}< i_{\rm S}$  යන පුකාශයන්ගෙන් කුමක් සතා වේ ද? ඔබේ පිළිතුරට හේතු දක්වන්න. තහඩු මත පතිතවන සෑම පෝටෝනයක්ම එක් පුකාශ ඉලෙක්ටුෝනයක් වීමෝචනය කරන බව උපකල්පනය කරන්න.
- (d) කොවිඩ්-19 (Covid-19) වෛරස අකිය කිරීම සඳහා 222 nm විකිරණ භාවිත කළ හැකි බව වාර්තා වී ඇත. නමුත් වෛදා විදහාත්මක යෙදීම්වල දී 222 nm විකිරණ මිනිස් සිරුරකට භාවිත කළ හැකි උපරිම නිරාවරණ සීමාව වන්නේ පැය 8ක් තුළ 24 mJ cm $^{-2}$  ය. පුද්ගලයකුගේ කොවිඩ්-19 වෛරස් සහිත අත්ලක සිට 20 cm ඇතින් තබා ඇති 222 nm විකිරණ විමෝචනය කරන ලක්ෂායීය පුභවයකට තිබිය යුතු උපරිම ක්ෂමතාව කොපමණ ද? ( $\pi=3$  ලෙස ගන්න.)

# Visit Online Panthiya YouTube channel to watch Combined Maths and Chemistry Videos

