සියලු ම හිමිකම් ඇම්ටිණි / முழுப் பதிப்புரிமையுடையது /All Rights Reserved}

I

ලි ලංකා විභාග දෙපාර්තරමින්තුව ලී ලංකා විභාග දෙපාර්තරේල් දැනිය. එල්ලින සුළුවා ප්රාගේ ජිනාග දෙපාර්තරමින්තුව ලී ලංකා විභාග දෙපාර්තරමින්තුව ලේකා විභාග දෙපාර්තරම් ලේකා විභාග දෙපාර්තරමින්තුව ලේකා විභාග දෙපාර්තරම්න්තුව ලේකා දෙපාර්තරම්න්තුව ලේකා විභාග දෙපාර්තරම්න්තුව ලේකා විභාග දෙපාර්තරම් ලේකා වෙපාර්තරම් ලේකා වෙපාර්තරම් ලේකා වෙපාර්තරම් ලේකා වෙපාර්තරම් ලේකා

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018

සංයුක්ත ගණිතය இணைந்த கணிதம் Combined Mathematics

2018.08.06 / 0830 - 1140

පැය භූනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමහර කියවම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුවත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විභාග අංකය

උපදෙස්:

* මෙම ප්‍රශ්න පත්‍රය කොටස් දෙකකින් සමන්විත වේ;
 A කොටස (ප්‍රශ්න 1 - 10) සහ B කොටස (ප්‍රශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශෳ චේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොවස:

පුශ්න පහකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය, B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- # පුශ්න පතුයෙහි B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරික්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(10) සංයුක්ත ගණිතය I		
කොටස	උශ්න අංකය	ලකුණු
	1	500 F000
	2	
A	3	
	4	
	5	
	6	62,00
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	එකතුව	
	පුතිශනය	

I පතුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

ඉලක්කමෙන්	
අකුරෙන්	

සංකේත අංක

උත්තර පතු පරීක්	ෂක	
පරීක්ෂා කළේ:	1	
	2	
අධීක්ෂණය කළේ		

AL/2018/10/S-I	2018/10/S-I - 2 -	
	A කොටස	
1. ගණිත අග<u>පු</u>හන මූලධර්මය භාවිතයෙ	පත්, සියලු $n \in \mathbb{Z}^+$ සඳහා $\sum_{r=1}^n r^3 = \frac{1}{4} n^2 (n+1)^2$	බව සාධනය කරන්න.

	r=1 4
•	A- 0 < - 0 4 1 - 4
Z.	f(x) = (x - 1) + (x - 1) + (x - 1) = (x - 1)
	එක ම රූප සටහනක $y=3- x $ හා $y= x-1 $ හි පුස්තාරවල දළ සටහන් අඳින්න.
	ඒ නයින් හෝ අන් අයුරකින් හෝ, $ x + x-1 \leq 3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
	ඒ නයින් හෝ අන් අයුරකින් හෝ, $ x + x-1 \leq 3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
	ඒ නයින් හෝ අන් අයුරකින් හෝ, $ x + x-1 \leq 3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
	ඒ නයින් හෝ අන් අයුරකින් හෝ, $ x + x-1 \leq 3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
	ඒ නයින් හෝ අන් අයුරකින් හෝ , $ x + x-1 \leq 3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
	ඒ නයින් හෝ අන් අයුරකින් හෝ, $ x + x-1 \leq 3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
	ඒ නයින් හෝ අන් අයුරකින් හෝ , $ x + x-1 \leq 3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
	ඒ නයින් හෝ අන් අයුරකින් හෝ , $ x + x-1 \leq 3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
	ඒ නයින් හෝ අන් අයුරකින් හෝ , $ x + x-1 \leq 3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
	ඒ නයින් හෝ අන් අයුරකින් හෝ , $ x + x-1 \leq 3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
	ඒ නයින් හෝ අන් අයුරකින් හෝ , $ x + x-1 \leq 3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
	ඒ නයින් හෝ අන් අයුරකින් හෝ, $ x + x-1 \leq 3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
	ඒ නගින් හෝ අන් අශුරකින් හෝ, $ x + x-1 \leq 3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
	ඒ නයින් හෝ අන් අයුරකින් හෝ, $ x + x-1 \leq 3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
	ඒ නයින් හෝ අන් අයුරකින් හෝ, $ x + x-1 \leq 3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
	ඒ නයින් හෝ අන් අයුරකින් හෝ, $ x + x-1 \leq 3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.

10223		
10225		
	විභාග අංකය	

1		1
3.	ආගන්ඩ් සටහනක, ${ m Arg}(z-3i)=-rac{\pi}{3}$ සපුරාලන z සංකීර්ණ සංඛාා නිරූපණය කරන ලක්ෂාවල පථයෙහි	
	දළ සටහනක් අඳින්න.	1
	ඒ නයින් හෝ අන් අයුරකින් හෝ, ${\rm Arg}(\overline{z}+3i)=\frac{\pi}{3}$ වන පරිදි $ z-1 $ හි අවම අගය සොයන්න.	
		ı
4.	$\left(x^2+rac{3k}{x} ight)^8$ හි ද්විපද පුසාරණයේ x හා x^4 හි සංගුණක සමාන වේ. k තියකයෙහි අගය සොයන්න.	
Œ		
	••••••	
	•••••	
		.
		.
	[ගතරවැනි පිටුව බල	320
-		ww.

AL/2018/10/S-I

5	$\lim_{x\to 0} \frac{1-\cos\left(\frac{\pi x}{4}\right)}{x^2(x+1)} = \frac{\pi^2}{32} \ \text{බව පෙන්වන්න.}$	
		•
		•
6.	$V = e^{x^2}$, $V = e^{y^2}$, $r = 0$, $r = 3$ and $v = 0$ and $r = 0$ and $r = 0$ and $r = 0$.	
6.	$y=e^{2x},\ y=e^{3-x},\ x=0,\ x=3$ හා $y=0$ වකු මගින් ආවෘත පෙදෙසෙහි වර්ගඵලය, වර්ග ඒකක $\frac{3}{2}\left(e^2-1\right)$ බව පෙන්වන්න.)
6.	$y=e^{2x},\ y=e^{3x},\ x=0,\ x=3$ හා $y=0$ වකු මගින් ආවෘත පෙදෙසෙහි වර්ගඵලය, වර්ග ඒකක $\frac{3}{2}\left(e^2-1\right)$ බව පෙන්වන්න.)
6.	$y=e^{2x},\ y=e^{3x},\ x=0,\ x=3$ හා $y=0$ වකු මගින් ආවෘත පෙදෙසෙහි වර්ගඵලය, වර්ග ඒකක $\frac{3}{2}\left(e^2-1\right)$ බව පෙන්වන්න.)
6.	$y=e^{x}$, $y=e^{y}$, $x=0$, $x=3$ හා $y=0$ වකු මගින් ආවෘත පෙදෙසෙහි වර්ගඵලය, වර්ග ඒකක $\frac{3}{2}\left(e^2-1\right)$ බව පෙන්වන්න.)
6.	$y=e^{x-x},\ y=e^{y-x},\ x=0,\ x=3$ හා $y=0$ වකු මගින් ආවෘත පෙදෙසෙහි වර්ගඵලය, වර්ග ඒකක $\frac{3}{2}\left(e^2-1\right)$ බව පෙන්වන්න.)
6.	$y=e^{x-x},\ y=e^{y-x},\ x=0,\ x=3$ හා $y=0$ වකු මගින් ආවෘත පෙදෙසෙහි වර්ගඵලය, වර්ග ඒකක $\frac{3}{2}\left(e^2-1\right)$ බව පෙන්වන්න.)
6.	$y=e^{x-x},\ y=e^{y-x},\ x=0,\ x=3$ හා $y=0$ වකු මගින් ආවෘත පෙදෙසෙහි වර්ගඵලය, වර්ග ඒකක $\frac{3}{2}\left(e^2-1\right)$ බව පෙන්වන්න.)
6.)
6.	$y=e^{x^{2}},\ y=e^{y^{2}-x},\ x=0,\ x=3$ හා $y=0$ වකු මගින් ආවෘත පෙදෙසෙහි වර්ගඵලය, වර්ග ඒකක $\frac{3}{2}\left(e^{2}-1\right)$ බව පෙන්වන්න.	
6.		
6.		
6.		
6.		
6.		
6.		
6.		
6.)
6.		

7.	$\frac{\pi}{2} < t < \pi$ සඳහා $x = \ln\left(\tan\frac{t}{2}\right)$ හා $y = \sin t$ පරාමිතික සමීකරණ මගින් C වකුයක් දෙනු ලැබේ.
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos t \sin t$ බව පෙන්වන්න.
	$t=rac{2\pi}{3}$ ට අනුරූප ලක්ෂායෙහි දී C වකුයට ඇඳි ස්පර්ශ රේඛාවෙහි අනුකුමණය $-rac{\sqrt{3}}{4}$ බව අපෝහනය
	කරන්න.
8.	l_1 යනු $x+y-5=0$ සරල රේඛාව යැයි ගනිමු. $P\equiv (3,4)$ ලක්ෂාය හරහා යන හා l_1 ට ලම්බ වූ l_2 සරල
	රේඛාවෙහි සමීකරණය සොයන්න.
	රේඛාවෙහි සමීකරණය සොයන්න.
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද

9.	$P\equiv (1,2)$ හා $Q\equiv (7,10)$ යැයි ගනිමු. P හා Q ලක්ෂා විෂ්කම්භයක අන්ත ලෙස වූ වෘත්තයෙහි සමීකරණය $S\equiv (x-1)(x-a)+(y-2)(y-b)=0$ වන පරිදි a හා b නියතවල අගයන් ලියා දක්වන්න.
	$S'\equiv S+\lambda(4x-3y+2)=0$ යැයි ගනිමු; මෙහි $\lambda\in\mathbb{R}$ වේ. P හා Q ලක්ෂාා $S'=0$ වෘත්තය මත පිහිටන බව පෙන්වා, මෙම වෘත්තය $R\equiv (1,4)$ ලක්ෂාය හරහා යන පරිදි λ හි අගය සොයන්න.
10.	$x \neq (2n+1)\frac{\pi}{2}$ සඳහා $\sec^3 x + 2\sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{\left(1 - \sin x\right)^2}$ බව පෙන්වන්න; මෙහි $n \in \mathbb{Z}$ වේ.

සියලු ම හිමිකම් ඇවිටිනි / (முழுப் பதிப்புநிமையுடையது /All Rights Reserved]

ල ලංකා වතාල දෙපාර්තමේක්තුව ලි ලංකා විතාග දෙපාර්ත**ල අඩු කිරීම විතාග දෙපාර්තමේක්තුව** ලි ලංකා විතාග දෙපාර්තමේක්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் படுக்கத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of Examinations,

අධානයන පොදු සහතික පසු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2018

B කොටස

* පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

11. (a) $a,b\in\mathbb{R}$ යැයි ගනිමු. $3x^2-2$ (a+b) x+ab=0 සමීකරණයේ විවේචකය a හා b ඇසුරෙන් ලියා දක්වා ඒ නයින්, මෙම සමීකරණයේ මූල තාත්ත්වික බව පෙන්වන්න.

මෙම මූල lpha හා eta යැයි ගනිමු. a හා b ඇසුරෙන් lpha+eta හා lphaeta ලියා දක්වන්න.

දැන්, $\beta=\alpha+2$ යැයි ගනිමු. $a^2-ab+b^2=9$ බව පෙන්වා,

 $|a| \leq \sqrt{12}$ බව **අපෝගනය** කර, a ඇසුරෙන් b සොයන්න.

- (b) $c \neq 0$) හා d තාත්ත්වික සංඛතා යැයි ද $f(x) = x^3 + 4x^2 + cx + d$ යැයි ද ගනිමු. (x+c) මගින් f(x) බෙදූ විට ශේෂය $-c^3$ වේ. තව ද (x-c) යන්න f(x) හි සාධකයක් වේ. c=-2 හා d=-12 බව පෙන්වන්න. c හා d හි මෙම අගයන් සඳහා (x^2-4) මගින් f(x) බෙදූ විට ශේෂය සොයන්න.
- 12. (a) එක එකක පිරිමි ළමයින් තිදෙනකු හා ගැහැනු ළමයින් දෙදෙනකු සිටින කණ්ඩායම් දෙකක සාමාජිකයන් අතුරෙන්, සාමාජිකයන් හයදෙනකුගෙන් යුත් කමිටුවක් තෝරා ගත යුතුව ඇත්තේ කමිටුවේ සිටින ගැහැනු ළමයින් සංඛාහව වැඩි තරමින් දෙදෙනකු වන පරිදි ය.
 - (i) කමිටුවට එක් එක් කණ්ඩායමෙන් සාමාජිකයන් ඉරට්ටේ සංඛාහවක් තෝරා ගත යුතු නම්,
 - (ii) කම්ටුවට එක් ගැහැනු ළමයකු පමණක් තෝරා ගත යුතු නම්,

සෑදිය හැකි එවැනි වෙනස් කමිටු ගණන සොයන්න.

$$(b)$$
 $r \in \mathbb{Z}^+$ සඳහා $f(r) = \frac{1}{(r+1)^2}$ සහ $U_r = \frac{(r+2)}{(r+1)^2(r+3)^2}$ යැයි ගනිමු.

 $r \in \mathbb{Z}^+$ සඳහා $f(r) - f(r+2) = 4U_r$ බව පෙන්වන්න.

ඒ නගින්,
$$n\in\mathbb{Z}^+$$
 සඳහා $\sum_{r=1}^n U_r = \frac{13}{144} - \frac{1}{4(n+2)^2} - \frac{1}{4(n+3)^2}$ බව පෙන්වන්න.

 $\sum_{r=1}^\infty U_r$ අපරිමිත ශ්ලේණිය අභිසාරී බව **අපෝගනග** කර එහි ඓකාය සොයන්න.

$$n\!\in\! {\mathbb Z}^+$$
සඳහා $t_n=\sum_{r=n}^{2n}U_r$ යැයි ගතිමු.

 $\lim_{n\to\infty} t_n = 0$ බව පෙන්වන්න.

$$egin{aligned} \mathbf{13.} & (a) & \mathbf{A} = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 4 & -1 \end{pmatrix}$$
 හා $\mathbf{B} = \begin{pmatrix} 3 & 2a \\ -1 & 0 \\ 1 & 3a \end{pmatrix}$ යැයි ගනිමු; මෙහි $a \in \mathbb{R}$ වේ.

 ${f P}={f A}{f B}$ මගින් අර්ථ දැක්වෙන ${f P}$ නාහසය සොයා, a හි කිසිදු අගයකට ${f P}^{-1}$ නොපවතින බව පෙන්වන්න.

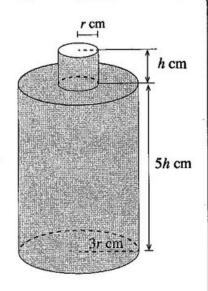
$$\mathbf{P} \left(\begin{array}{c} 1 \\ 2 \end{array} \right) = 5 \left(\begin{array}{c} 2 \\ 1 \end{array} \right)$$
 නම්, $a=2$ බව පෙන්වන්න.

a සඳහා මෙම අගය සහිත ව, $\mathbf{Q} = \mathbf{P} + \mathbf{I}$ යැයි ගනිමු; මෙහි \mathbf{I} යනු ගණය 2 වන ඒකක නාහසයයි.

$$\mathbf{Q}^{-1}$$
 ලියා දක්වා $\mathbf{A}\mathbf{A}^{\mathrm{T}}-\frac{1}{2}\mathbf{R}=\left(\frac{1}{5}\mathbf{Q}\right)^{-1}$ වන පරිදි \mathbf{R} නාහසය සොයන්න.

- (b) z=x+iy යැයි ගනිමු; මෙහි x,y∈ \mathbb{R} වේ. z හි, මාපාංකය |z| හා පුතිබද්ධය \overline{z} අර්ථ දක්වන්න.
 - (i) $z\overline{z} = |z|^2$,
 - (ii) $z + \overline{z} = 2 \operatorname{Re} z$ so $z \overline{z} = 2i \operatorname{Im} z$
 - බව පෙන්වන්න.

$$z \neq 1$$
 හා $w = \frac{1+z}{1-z}$ යැයි ගනිමු. $\operatorname{Re} w = \frac{1-\left|z\right|^2}{\left|1-z\right|^2}$ හා $\operatorname{Im} w = \frac{2\operatorname{Im} z}{\left|1-z\right|^2}$ බව පෙන්වන්න.


 $z=\cos\,lpha\,+\,i\,\sin\,lpha\,\,(0<lpha<2\pi)$ නම්, $w=i\cotrac{lpha}{2}$ බව තව දුරටත් පෙන්වන්න.

- (c) අාගන්ඩ සටහනක, A හා B ලක්ෂා පිළිවෙළින් -3i හා 4 සංකීර්ණ සංඛාා නිරූපණය කරයි. C හා D ලක්ෂා පළමුවන වෘත්ත පාදකයේ පිහිටන්නේ ABCD රොම්බසයක් හා $B\hat{A}D = \theta$ වන පරිදි ය; මෙහි $\theta = \sin^{-1}\left(\frac{7}{25}\right)$ වේ. C හා D ලක්ෂා මගින් නිරූපණය කරනු ලබන සංකීර්ණ සංඛාා සොයන්න.
- 14. (a) $x \neq -1$, $\frac{1}{3}$ සඳහා $f(x) = \frac{16(x-1)}{(x+1)^2(3x-1)}$ යැයි ගනිමු.

 $x \neq -1$, $\frac{1}{3}$ සඳහා f(x)හි වයුත්පන්නය, f'(x) යන්න $f'(x) = \frac{-32x(3x-5)}{(x+1)^3(3x-1)^2}$ මගින් දෙනු ලබන බව පෙන්වන්න.

ස්පර්ශෝත්මුඛ හා හැරුම් ලක්ෂා දක්වමින් y=f(x) හි පුස්තාරයේ දළ සටහනක් අඳින්න.

පුස්තාරය භාවිතයෙන්, $k(x+1)^2\,(3x-1)=16\,(x-1)$ සමීකරණයට හරියටම එක් මූලයක් පවතින පරිදි $k\!\in\!\mathbb{R}$ හි අගයන් සොයන්න.

15. (a) (i) x^2, x^1 හා x^0 හි සංගුණක සැසඳීමෙන්,

සියලු $x\in \mathbb{R}$ සඳහා $Ax^2(x-1)+Bx(x-1)+C(x-1)-Ax^3=1$ වන පරිදි A,B හා C නියතවල අගයන් සොයන්න.

ඒ නයින්, $\frac{1}{x^3(x-1)}$ යන්න භින්න භාග වලින් ලියා දක්වා $\int \frac{1}{x^3(x-1)} \, \mathrm{d}x$ සොයන්න.

(ii) කොටස් වශයෙන් අනුකලනය භාවිතයෙන්, $\int x^2 \cos 2x \, \mathrm{d}x$ සොයන්න.

(b) $\theta = an^{-1}(\cos x)$ ආදේශය භාවිතයෙන්, $\int\limits_0^\pi \frac{\sin x}{\sqrt{1+\cos^2 x}} \,\mathrm{d}x = 2\ln\left(1+\sqrt{2}\right)$ බව පෙන්වන්න.

a නියකයක් වන $\int\limits_0^a f(x)\,\mathrm{d}x = \int\limits_0^a f(a-x)\,\mathrm{d}x$ සූතුය භාවිතයෙන්, $\int\limits_0^\pi \frac{x\sin x}{\sqrt{1+\cos^2 x}}\,\mathrm{d}x$ සොයන්න.

 $A\equiv (-2,-3)$ හා $B\equiv (4,5)$ යැයි ගනිමු. AB රේඛාව සමග l_1 හා l_2 රේඛා එක එකක් සාදන සුළු කෝණය $rac{\pi}{4}$ වන පරිදි A ලක්ෂාය හරහා යන l_1 හා l_2 රේඛාවල සමීකරණ සොයන්න.

P හා Q ලක්ෂා පිළිවෙළින් l_1 හා l_2 මත ගෙන ඇත්තේ APBQ සමචතුරසුයක් වන පරිදි ය.

PQ හි සමීකරණය සොයා, P හා Q හි ඛණ්ඩාංක සොයන්න.

තව ද $A,\,P,\,B$ හා Q ලක්ෂා හරහා යන S වෘත්තයේ සමීකරණය සොයන්න.

 $\lambda > 1$ යැයි ගනිමු. $R \equiv (4\lambda\,,5\lambda\,)$ ලක්ෂාය, S වෘත්තයට පිටතින් පිහිටන බව පෙන්වන්න.

R ලක්ෂාගේ සිට S වෘත්තයට ඇඳි ස්පර්ශකවල ස්පර්ශ ජාහයේ සමීකරණය සොයන්න.

 λ (> 1) විචලනය වන විට, මෙම ස්පර්ශ ජාහයන් අචල ලක්ෂායක් හරහා යන බව පෙන්වන්න.

17. (a) $0 \le \theta \le \pi$ සඳහා $\cos 2\theta + \cos 3\theta = 0$ විසඳන්න. $\cos \theta$ ඇසුරෙන් $\cos 2\theta$ හා $\cos 3\theta$ ලියා දක්වා, $\cos 2\theta + \cos 3\theta = 4t^3 + 2t^2 - 3t - 1$ බව පෙන්වන්න; මෙහි $t = \cos \theta$ වේ.

ඒ නයින්, $4t^3+2t^2-3t-1=0$ සමීකරණයෙහි මූල තුන ලියා දක්වා $4t^2-2t-1=0$ සමීකරණයෙහි මූල $\cos\frac{\pi}{5}$ හා $\cos\frac{3\pi}{5}$ බව පෙන්වන්න. $\cos\frac{3\pi}{5}=\frac{1-\sqrt{5}}{4}$ බව **අපෝහන**ය කරන්න.

(b) ABC තිකෝණයක් යැයි ද D යනු BD:DC=m:n වන පරිදි BC මත වූ ලක්ෂාය යැයි ද ගනිමු; මෙහි $m,\,n>0$ වේ. $B\hat{A}D=\alpha$ හා $D\hat{A}C=\beta$ බව දී ඇත. BAD හා DAC තිකෝණ සඳහා සයින් නීතිය භාවිතයෙන්, $\frac{mb}{nc}=\frac{\sin\alpha}{\sin\beta}$ බව පෙන්වන්න; මෙහි b=AC හා c=AB වේ.

ඒ නයින්, $\frac{mb-nc}{mb+nc}=\tan\left(\frac{\alpha-\beta}{2}\right)\cot\left(\frac{\alpha+\beta}{2}\right)$ බව පෙන්වන්න.

(c) $2 \tan^{-1} \left(\frac{1}{3}\right) + \tan^{-1} \left(\frac{4}{3}\right) = \frac{\pi}{2}$ බව පෙන්වන්න.

Visit Online Panthiya YouTube channel to watch Combined Maths Videos

