
AL/2020/02-S-II(B, C)(NEW)

-9-

(020 758)

6. (a) දී ඇති T උප්ණත්වයේදී සංවෘත බඳුනක් තුළ සිදුවන පහත දක්වා ඇති පුතිකිුයාව සලකන්න.

$$2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$$

- (i) ප්‍රතික්‍රියාවේ දක්වා ඇති එක් එක් සංයෝගයට අදාළව ප්‍රතික්‍රියාවේ ශීස්තාව සඳහා ප්‍රකාශන තුනක් ලියන්න.
- (ii) මෙම පුතිකියාව, T උෂ්ණත්වයේදී, $N_2O_5(g)$ හි $0.10 \, {
 m mol} \, {
 m dm}^{-3}$ ආරම්භක සාන්දුණයක් සහිතව සිදු කරන ලදී.

400 s කාලයකට පසුව ආරම්භක පුමාණයෙන් 40% ක් වියෝජනය වී ඇති බව සොයාගන්නා ලදී.

- මෙම කාල පරාසයේදී N₂O₅(g) වියෝජනය වීමේ සාමාන‍ය ශීසුතාව (average rate of decomposition) ගණනය කරන්න.
- II. NO2(g) සහ O2(g) සෑදෙන සාමානා ශීඝුතාවයන් (average rates of formation) ගණනය කරන්න.
- (iii) වෙනත් පරීක්ෂණයකදී, මෙම ප්‍රතික්‍රියාව සඳහා 300 K දී ආරම්භක ශීඝ්‍රතා මනින ලද අතර, එහි ප්‍රතිඵල පහත දක්වා ඇත.

$[N_2O_5(g)] / mol dm^{-3}$	0.01	0.02	0.03		
ආරම්භක ශීඝුතාව / mol dm ⁻³ s ^{–1}	6.930×10^{-5}	1.386×10^{-4}	2.079×10^{-4}		

300 K දී පුතිකියාව සඳහා ශීඝුතා පුකාශනය වසුත්පන්න කරන්න.

- (iv) වෙනත් පරීක්ෂණයක් 300 K දී $N_2O_5(g)$ හි 0.64 mol dm^{-3} ආරම්භක සාන්දුණයක් සහිතව සිදු කරන ලදී. 500 s කාලයකට පසුව ඉතිරි වී ඇති $N_2O_5(g)$ සාන්දුණය $2.0 \times 10^{-2} \text{ mol dm}^{-3}$ බව සොයාගන්නා ලදී.
 - I. $300~{
 m K}$ දී පුතිකිුයාවේ අර්ධ-ජීව කාලය $(t_{1/2})$ ගණනය කරන්න.
 - II. 300 K දී පුතිකි්යාවේ ශීඝුතා-නියතය ගණනය කරන්න.
 - (v) මෙම ප්‍රතික්‍රියාව පහත සඳහන් මූලික පියවර සහිත යන්තුණයක් හරහා සිදුවේ.

පියවර 1	:	$N_2O_5(g)$	\Rightarrow	NO ₃ (g)	+	$NO_2(g)$: වේගවත්
පියවර 2	:	NO ₃ (g)	+	$NO_2(g)$	\rightarrow	2NO ₂ (g) +	O(g) : සෙමින්
පියවර 3	:	$N_2O_5(g)$	+	O(g)	\rightarrow	2NO ₂ (g) +	O ₂ (g) : වේගවත්

ඉහත යන්තුණය පුතිකිුයාවෙහි වේග නියමයට අනුකූල වන බව පෙන්වන්න.

- (b) T උෂ්ණත්වයේදී A සහ B නමැති දුව දෙකක් රේචනය කළ සංවෘත බඳුනක් තුළ මිශු කිරීමෙන් පරිපූර්ණ ද්වයංගී දුව මිශුණයක් සාදන ලදී. T උෂ්ණත්වයේදී සමතුලිතතාවයට එළඹි පසු වාෂ්ප කලාපයෙහි A සහ B හි අාංශික වාෂ්ප පීඩන පිළිවෙළින් P_A සහ P_B වේ. T උෂ්ණත්වයේදී A සහ B හි සංතෘප්ත වාෂ්ප පීඩන පිළිවෙළින් P[°]_A සහ P[°]_B වේ. දාවණය තුළ A සහ B හි මවුලහාග පිළිවෙළින් X_A සහ X_B වේ.
 - (i) P_A = P_A[°]X_A බව පෙන්වන්න.
 (සමතුලිත අවස්ථාවේදී වාෂ්පීකරණයේ හා ඝනීභවනයේ ශීඝ්තාවයන් සමාන බව සලකන්න.)
 - (ii) 300 K දී ඉහත පද්ධතියේ මුළු පීඩනය $5.0 \times 10^4 \text{ Pa}$ වේ. 300 K හිදී සංශුද්ධ \mathbf{A} සහ \mathbf{B} හි සංතෘප්ත වාෂ්ප පීඩන පිළිවෙළින් $7.0 \times 10^4 \text{ Pa}$ හා $3.0 \times 10^4 \text{ Pa}$ වේ.
 - සමතුලිත මිශුණයෙහි දුව කලාපයේ ඇති A හි මවුලභාගය ගණනය කරන්න.
 - සමතුලිත මිශුණයෙහිදී A හි වාෂ්ප පීඩනය ගණනය කරන්න.

(ලකුණු 70 යි)

(ලකුණු 80 යි)

7. (a) (i) විදයුත් විච්ඡේද හා ගැල්වානී කෝෂවල ගුණ සංසන්දනය කිරීම සඳහා පහත වගුව පිටපත් කර දී ඇති පද යොදා සම්පූර්ණ කරන්න.

පද: ඇනෝඩය, කැතෝඩය, ධන, ඍණ, ස්වයංසිද්ධ, ස්වයංසිද්ධ නොවන

		ව්දපුත් විච්පේද කෝෂය	ගැල්වානි කෝෂය
Α.	ඔක්සිකරණ අර්ධ පුතිකිුයාව සිදු වන්නේ		
В.	ඔක්සිහරණ අර්ධ පුතිකිුයාව සිදු වන්නේ		
C.	$E^{ m o}_{ m cell}$ හි ලකුණ		
D.	ඉලෙක්ටුෝන ගලා යන්නේ	සිට දක්වා	දක්වා
E.			

(ii) පහත දැක්වෙන පරිදි 300 K දී Zn(s) ඇනෝඩයක්, භාස්මික ජලීය විදයුත් විච්ඡේදායක් හා වාතයේ ඇති O₂(g) වායුව ලබාගැනීමට උපකාරී වන සවිවර Pt කැතෝඩයක් භාවිතයෙන් විදයුත් රසායනික කෝෂයක් ගොඩනගන ලදී. කෝෂය ක්‍රියාත්මක වනවිට ZnO(s) සෑදේ.

 $E_{\text{ZnO(s)}|\text{Zn(s)}|\text{OH}^{-}(\text{aq})}^{\circ} = -1.31 \text{ V} \text{ cso } E_{\text{O}_{2}(\text{g})|\text{OH}^{-}(\text{aq})}^{\circ} = +0.34 \text{ V}$ Zn = 65 g mol⁻¹, O = 16 g mol⁻¹ cso

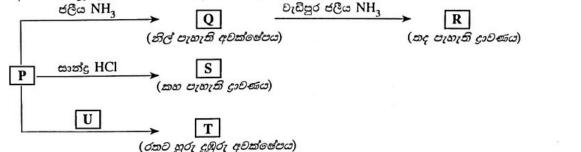
1 F = 96,500 C බව දී ඇත.

- ඇතෝඩය හා කැතෝඩය මත සිදුවන අර්ධ පුතිකියා ලියා දක්වන්න.
- II. සම්පූර්ණ කෝෂ පුතිකිුයාව ලියා දක්වන්න.
- III. 300 K දී කෝෂයේ විභවය <u>E</u>° ගණනය කරන්න.
- IV. ඉලෙක්ටුෝඩ අතර OH (aq) හි ගමන් මගෙහි දිශාව සඳහන් කරන්න.
- V. 300 K දී කෝෂය 800 s කාලයක් තුළ කියාත්මක වනවිටදී O₂(g) 2 mol වැය වේ.
 - A. කෝෂය හරහා ගමන් කරන ඉලෙක්ටෝන මවුල සංඛාාව ගණනය කරන්න.
 - B. සෑදෙන ZnO(s) හි ස්කන්ධය ගණනය කරන්න.
 - C. කෝෂය තුළින් ගමන් කරන ධාරාව ගණනය කරන්න.

(උකුණු 75 යි)

සවිවර

කැතෝඩය

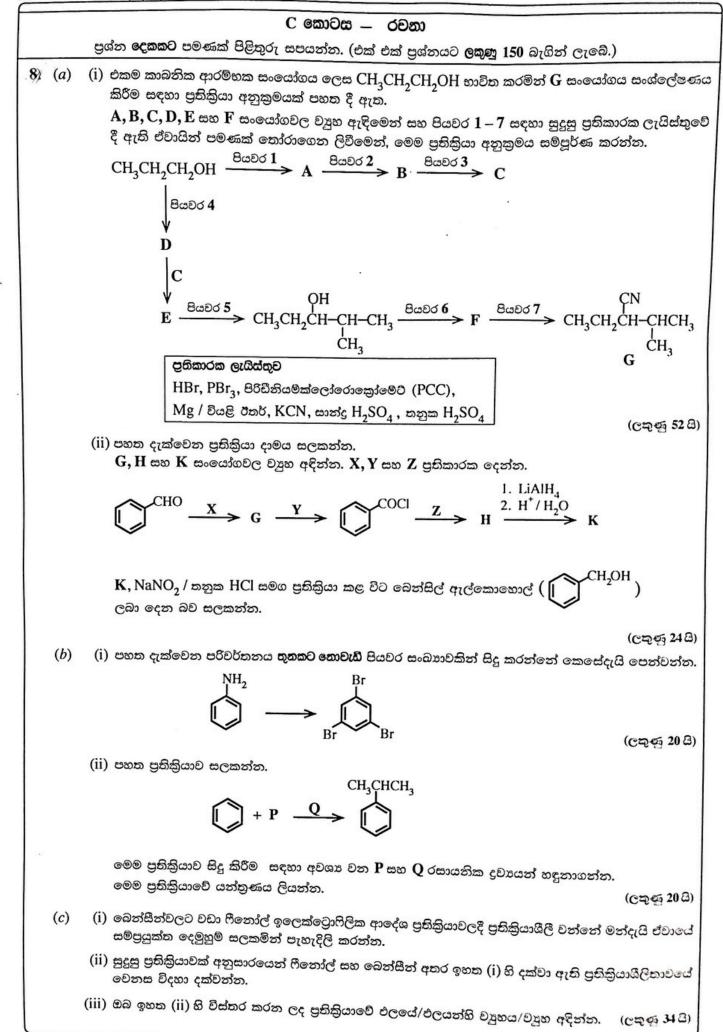

Zn

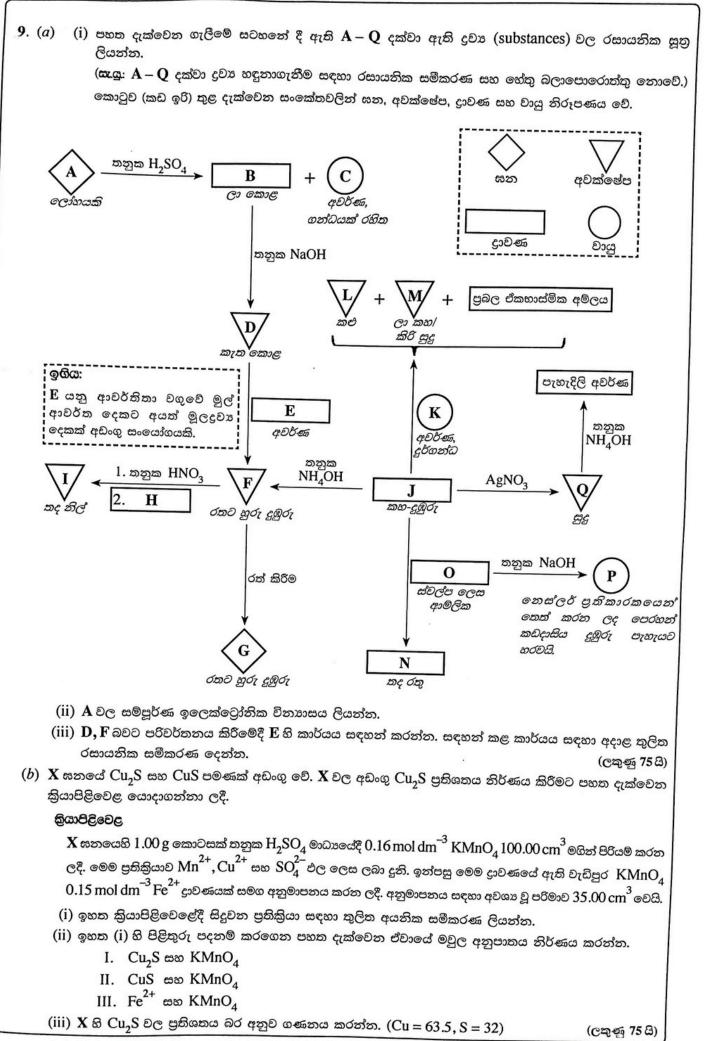
ඇනෝඩය.

විදසුත්

විච්ඡේදාය

(b) M(NO₃)_n ලවණය ආසැත ජලයේ දුවණය කළවිට P නම් වර්ණවත් සංකීර්ණ අයනය සෑදේ. M, 3d ගොනුවට අයත් ආන්තරික මූලදුවායකි. P පහත දැක්වෙන පුතිකියාවලට භාජනය වේ.




T සහ U මූලදුවා හතරක් බැගින් අඩංගු සංගත සංයෝග වේ. P, R සහ S සංකීර්ණ අයන වේ.

- (i) M ලෝහය හඳුනාගන්න. P සංකීර්ණ අයනයේ M වල ඔක්සිකරණ අවස්ථාව දෙන්න.
- (ii) **M**(NO₃)_n හි n වල අගය දෙන්න.
- (iii) P සංකීර්ණ අයනයේ M වල සම්පූර්ණ ඉලෙක්ටෝනික විනාහසය ලියන්න.
- (iv) P, Q, R, S, T සහ U වල රසායනික සුතු ලියන්න.
- (v) P, R, S, T සහ U වල IUPAC නම් ලියන්න.
- (vi) P වල වර්ණය කුමක් ද?

(vii) පහත I හා II හිදී ඔබ බලාපොරොත්තු වන නිරීක්ෂණ මොනවා ද?

- I. කාමර උෂ්ණත්වයේදී ${f P}$ අඩංගු ආම්ලික දුාවණයකට ${f H}_2 S$ වායුව යැවූ විට
- II. I න් ලැබෙන මිශුණයේ දුවණය වී ඇති H₂S ඉවත් කිරීමෙන් පසු තනුක HNO₃ සමග රත්කළ විට
- (viii) ජලීය දාවණයක පවතින Mⁿ⁺ වල සාන්දුණය නිර්ණය කිරීමට තුමවේදයක් පහත දැක්වෙන රසායනික දුවා උපයෝගී කරගනිමින්, තුලිත රසායනික සමීකරණ ආධාරයෙන් කෙටියෙන් විස්තර කරන්න. KI, Na₂S₂O₃ සහ පිෂ්ටය (ලතුණු 75 යි)

- 10. (a) පහත සඳහන් ප්‍රශ්න ටයිටේනියම් ඩයොක්සයිඩ් (TiO₂) වල ගුණ සහ එහි නිෂ්පාදනය "ක්ලෝරයිඩ් ක්‍රියාවලිය" මගින් සිදු කිරීම මත පදනම් වේ.
 - (i) මෙම ක්‍රියාවලිය සඳහා භාවිත වන අමුදුවා නම් කරන්න.
 - (ii) නිසි අවස්ථාවන්හි තුලිත රසායනික සමීකරණ භාවිත කරමින් TiO₂ නිෂ්පාදන ක්‍රියාවලිය කෙටියෙන් විස්තර කරන්න.
 - (iii) TiO2 වල ගුණ තුනක් සඳහන් කර, එක් එක් ගුණයට අදාළ භාවිතයක් බැගින් දෙන්න.
 - (iv) ශී ලංකාවේ TiO₂ නිෂ්පාදන කර්මාන්ත ශාලාවක් ස්ථාපිත කිරීමට ඔබ සලකා බලන්නේ නම්, සපුරාලිය යුතු අවශාතා **තුනක්** සඳහන් කරන්න.
 - (v) ඉහත (ii) හි විස්තර කළ නිෂ්පාදන ක්‍රියාවලිය ගෝලීය උණුසුම සඳහා දායකවන්නේ ද? ඔබේ පිළිතුර සාධාරණීකරණය කරන්න. (ලකුණු 50 යි)
 - (b) හරිතාගාර ආචරණයෙහි වෙනස්වීම හේතුකොටගෙන වර්තමානයේ පෘථිවිගෝලයේ උණුසුම් වීම කාර්මික විප්ලවයට පෙර පැවැති තත්ත්වයට වඩා සැලකිය යුතු ලෙස වැඩි වී ඇත.
 - (i) හරිතාගාර ආචරණය යනුවෙන් අදහස් වන්නේ කුමක්දැයි කෙටියෙන් පැහැදිලි කරන්න.
 - (ii) පෘථිවිගෝලය උණුසුම් වීම නිසා සිදුවන පුධාන පාරිසරික ගැටලුව හඳුනාගන්න.
 - (iii) ගෝලීය උණුසුම ඉහළ යාමට දායක වන **පුධාන** ස්වාභාවික වායුන් **දෙකක්** සඳහන් කරන්න.
 - (iv) ඔබ (iii) හි සඳහන් කළ වායුන් දෙක පරිසරයට මුදාහැරීමට ක්ෂුද ජීවන් දායක වන ආකාරය කෙටියෙන් පැහැදිලි කරන්න.
 - (v) ඉහත (iii) හි සඳහන් කළ වායුවලට අමතරව ගෝලීය උණුසුම ඉහළ යාමට සාජ්වම දායක වන කෘතිම වාෂ්පශීලී සංයෝග කාණ්ඩ දෙකක් නම් කර, එක් කාණ්ඩයකින් එක් සංයෝගය බැගින් තෝරාගෙන ඒවායේ වස්හ අඳින්න.
 - (vi) ඉහත (v) හි සඳහන් කළ සංයෝග කාණ්ඩ දෙක අතුරෙන් ඉහළ වායුගෝලයේ ඕසෝන් වියෝජනය උත්ප්ර්රණයට දායක වන එක් සංයෝග කාණ්ඩයක් හඳුනාගන්න.
 - (vii) කොවිඩ්-19 අධිවසංගතය හේතුවෙන් කාර්මික කටයුතු අඩාල වීම නිසා බොහෝ රටවල ගෝලීය පාරිසරික ප්‍රශ්න තාවකාලිකව සමනය වී ඇත. ඔබ ඉගෙන ගත් ප්‍රධාන ගෝලීය පාරිසරික ප්‍රශ්න දෙකක් අනුසාරයෙන් මෙම ප්‍රකාශය සනාථ කරන්න. (ලකුණු 50 යි)
 - (c) පහත සඳහන් ප්‍රශ්න දී ඇති බහුඅවයවක මත පදනම් වේ.

පොලිවයිනයිල් ක්ලෝරයිඩ් (PVC), පොලිඑතිලීන් (PE), පොලිස්ටයිරීන් (PS). බෙක්ලයිට්,

නයිලෝන් 6.6, පොලිඑසිලීන් ටෙරිප්තැලේට් (PET), ගටා පර්චා (Gutta percha)

- (i) ඉහත සඳහන් බහුඅවයවක හතරක පුනරාවර්භී ඒකක අදින්න.
- (ii) ඉහත සඳහන් බහුඅවයවක හත (7)
 - l. ස්වාභාවික හෝ කෘතුිම බහුඅවයවක
 - II. ආකලන හෝ සංඝනන බහුඅවයවක

ලෙස වර්ගීකරණය කරන්න.

- (iii) බේක්ලයිට් සැදීමේදී භාවිත වන ඒක අවයවක දෙක නම් කරන්න.
- (iv) බහුඅවයවක ඒවායේ තාපජ ගුණ අනුව වර්ග දෙකකට බෙදිය හැක. එම වර්ග දෙක සඳහන් කරන්න. PVC සහ බේක්ලයිට් මින් කුමන වර්ගයන්ට අයත්දැයි ලියන්න.
- (v) ඉහත ලැයිස්තුවෙහි බහුඅවයවක තුනක් සඳහා භාවිත එක බැගින් සඳහන් කරන්න. (ලතුණු 50 යි)

* * *

L/2020/0	2-S-I	I(B, C	C)(NI	EW)					- 15	i -									
												65231 - 2003							
							ආර	වර්සි	ີເອກ	වගුව									
							4.			ಲ್ನಲ									
		1																1	
		1																2	
1	H 3		1												_		_	He	
2	Li	4 D											5	6	7	8	9	10	
2	11	Be											B	C	N	0	F	Ne	
3	1.1.1	12											13	14	15	16	17	18	
3	Na 19	Mg						1					Al	Si	P	S	CI	Ar	
4	K	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
4		Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
5	37 Dh	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	
3	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe	
6	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
0	Cs 87	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
7	8/ Fr	88 Ra	Ac-	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	
1	FI	Ka	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og	
			57	58	59	60	61	()	(2)	11									
			La	Ce	Pr	Nd	61 Dm	62 Sm	63 E	64	65 Th	66	67	68	69	70	71		
			89	90	91	92	Pm 93	Sm 94	Eu 95	Gd 96	Tb 97	Dy	Ho	Er	Tm	Yb	Lu		
			Ac	Th	Pa	U U	Np	94 Pu	95 Am	Cm	Bk	98 Cf	99 Ea	100	101	102	103		
		l	me	1 II	Ia	U	MP	ru	Am	Cm	DK	CI	Es	Fm	Md	No	Lr		

Visit Online Panthiya YouTube channel to watch Chemistry videos

