AL/2022(2023)/02/S-II(B, C)

-9-

10641

AL/2022(2023)/02/S-II(B, C) -9-			
සියලු ම හිමිකම් ඇව්රිණි	புரிமையுடையது / All Rights R	eserved]	
ல் கலை நீலுவ குரைமைகள்கள் இலங்கைப் பிரின் குடின் குடன் க குடின் குடன் குட குடின் குடன் குட இலங்கைப் பர்க்கைக்களம் இலங்கை குடன் குட இலங்கைப் பர்க்கைக்களம் இலங்கை குடன் குடன் இலங்கைப் பர்க்கு குடன் குடன் இலங்கைப் பர்க்கு குடன் குடன் குலங்கைப் பர்க்கு குடன் குடன் குலங்கைப் பர்க்கு குடன் குடைக் குடன் குடன் குடன் குடன் குடன் குடைக் குடன் குடன் குடன் குடைக் குடன் குடன் குடன் குடைக் குடன் குடன் குடன் க			
අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2022(2023) கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2022(2023) General Certificate of Education (Adv. Level) Examination, 2022(2023)			
<mark>රසායන විදනාව II</mark> இரசாயனவியல் II Chemistry II		2	02 S II
* සාර්වනු වායු නියතය $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ * ඇවගාඩ්රෝ නියතය $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$			
B කොටස – රවනා පුශ්න දෙකකට පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට ලකුණු 150 බැගින් ලැබේ.)			
5. (a) උෂ්ණත්වය 800 °C දී ස	හත දී ඇති (1) පුතිකියාව	සලකන්න.	
	$+ I_2(g) \rightleftharpoons 2HI(g)$		
ආරම්භයේදී, HI(g) 0.45 mol රේචනය කරන ලද 800 ℃ ඇති දෘඪ සංවෘත 1.0 dm ³ බඳුනක් තුළට ඇතුල් කර ඉහත සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. සමතුලිතතාවයේදී H ₂ (g) 0.05 mol ඇති බව සොයාගන්නා ලදී.			
	C දී ඉහත සමතුලිතතාවය	සඳහා සමතුලිතතා	නියතය K _{C1} ගණනය කරන්න.
(ii) උෂ්ණත්වය 800 ℃ ඇති වෙනත් සමාන රේචනය කරන ලද බඳුනක් තුළ සමතුලිතතා නියතය K _{C2} = 1.2 × 10 ⁸ mol ^{−1} dm ³ සහිත (2) පුතිකිුයාව සිදුවේ.			
$2H_2(g) + S_2(g) \rightleftharpoons 2H_2S(g)(2)$			
බඳුන් දෙක එකිනෙකට සම්බන්ධ කළ විට උෂ්ණත්වය 800 ℃ දී පහත (3) පුතිකියාව සිදුවේ.			
$2I_2(g) + 2H_2S(g) \rightleftharpoons S_2(g) + 4HI(g)(3)$			
උෂ්ණත්වය 800 ℃ දී (3) පුතිකි්යාව සඳහා සමතුලිතතා නියතය K_{C_3} ගණනය කරන්න.			
(iii) උප්ණත්වය 800 ℃ ඇති 1.0 dm ³ දෘඪ සංවෘත බඳුනක් තුළ ඉහත (ii) හි සඳහන් (3) හි සමතුලිතතා මිශුණයක HI(g) 5.00 × 10 ⁻⁵ mol, S ₂ (g) 1.25 × 10 ⁻⁶ mol සහ H ₂ S(g) 2.50 × 10 ⁻⁵ mol අඩංගු වේ. ඉහත මිශුණයෙහි ඇති I ₂ (g) මවුල පුමාණය ගණනය කරන්න.			
(iv) උෂ්ණත්වය 800 ℃ ඇති ඉහත (iii) හි සමතුලිතතා මිශුණයට අමතර I ₂ (g) 2.50 × 10 ^{−5} mol එකතු කරන ලදී.			
I. අමතර ${ m I_2}({ m g})$ එකතු කරන ලද මොහොතේදී පුතිකිුයා ලබ්ධිය $({ m Q_C})$ ගණනය කරන්න.			
${ m II.}$ වැඩිපුර ${ m I_2(g)}$ එකතු කළ විට, සමතුලිතතාවයෙහි සිදුවන වෙනස පැහැදිලි කරන්න.			
III. අමතර I ₂ (g) එකතු කළ විට කාලයත් සමග මිශුණයෙහි ඇති එක් එක් සංඝටකයන්හි සාන්දුණවල			
වෙනස්වම ද	ළ සටහනකින් දක්වන්න.		(ලකුණු 60 යි)
(b) (i) පහත දී ඇති දත්න H ₂ (g) + I ₂ (g)	ත භාවිතයෙන් (4) පුතිකියා) → 2 HI(g)	ව සඳහා 27 °C දී (4)	$\Delta H^{ m o},$ $\Delta S^{ m o}$ සහ $\Delta G^{ m o}$ ගණනය කරන්න.
27 ℃ ₹ :			$\Delta J \text{ mol}^{-1}, \Delta S^{\circ} = 410 \text{ J K}^{-1} \text{ mol}^{-1}$
	$I_2(s) \rightarrow I_2(g)$; $\Delta H^{\circ} = 63$ k	$LJ \text{ mol}^{-1}, \Delta S^{\circ} = 260 \text{ J K}^{-1} \text{ mol}^{-1}$
(ii) පහත දී ඇති දත්ත භාවිතයෙන් (5) පුතිකියාව සඳහා 27 °C දී ΔH° , ΔS° සහ ΔG° ගණනය කරන්න. $2 H_2 S(g) \longrightarrow 2 H_2(g) + S_2(g)$ (5)			
27 °C ද:		$\Delta H_f^{\circ}/\text{kJ mol}^{-1}$	$\Delta S_f^{\circ} / J K^{-1} mol^{-1}$
	H ₂ (g) :	0	130
	$S_{2}(g)$:	127	230
	$H_2S(g)$:	-20	200
	2		

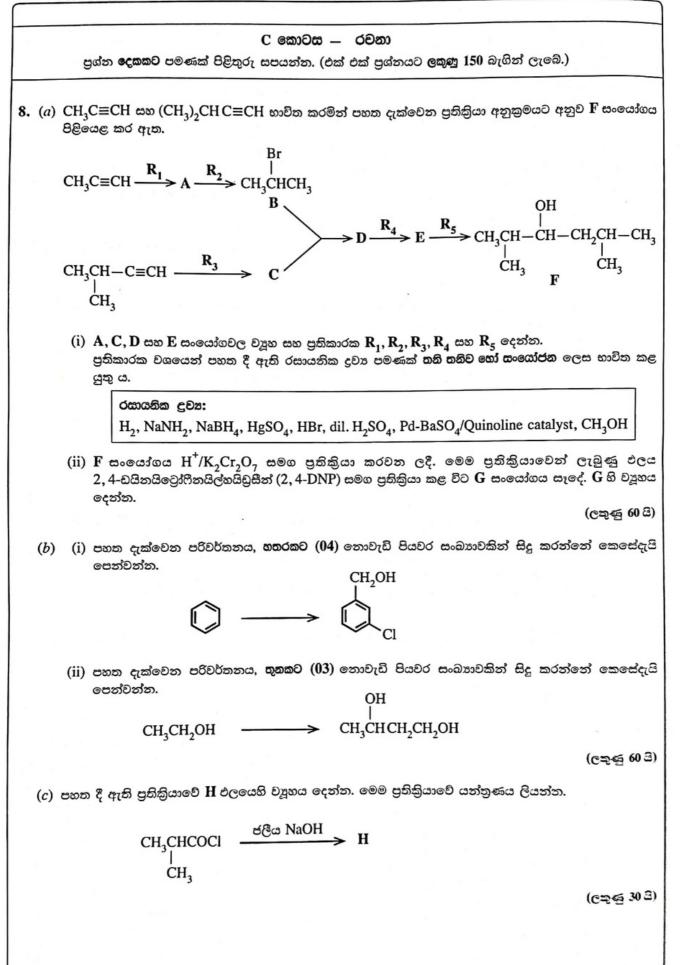
(iii) ඉහත (b)(i) හා (b)(ii) ත් ලබාගත් පිළිතුරු භාවිතයෙන් 27 °C දී පහත දී ඇති (6) ප්‍රතික්‍රියාව ස්වයංසිද්ධ ද නැත් ද යන වග හේතු දක්වමින් ප්‍රරෝකතනය කරන්න.

 $2I_2(g) + 2H_2S(g) \longrightarrow S_2(g) + 4HI(g) - \dots (6)$

(ලක්ණි 60 හි)

- (c) උෂ්ණත්වය 25 °C දී බීකරයක ඇති ජලීය දුාවණ 1.0 dm³ පරිමාවක Cl⁻(aq) අයන 2.0 × 10^{-2} mol සහ $CrO_4^{2-}(aq)$ අයන 2.0 × 10^{-2} mol අඩංගු වේ. ඉහත දුාවණයට ජලීය සාත්දු AgNO₃ දුාවණයක ස්වල්ප පුමාණය බැගින් **සෙමන්** එකතු කරන ලදී. 25 °C දී K_{sp} (AgCl(s)) = 1.60 × 10^{-10} mol² dm⁻⁶ සහ K_{sp} (Ag₂CrO₄(s)) = 8.0 × 10^{-12} mol³ dm⁻⁹ වේ. AgNO₃(aq) දුාවණය එකතු කිරීමේදී දුාවණ පරිමාවෙහි සැලකිය යුතු වෙනසක් සිදු නොවන බව උපකල්පනය කරන්න.
 - (i) පළමුව අවක්ෂේප වන්නේ AgCl බව සුදුසු ගණනය කිරීමකින් පෙන්වන්න.
 - (ii) Ag₂CrO₄ අවක්ෂේප වීම ආරම්භ වන අවස්ථාවේදී, දාවණයෙහි පවතින Cl (aq) අයන සාන්දුණය ගණනය කරන්න.

(ලකුණු 30 යි)


- 6. (a) 25 °C ඇති සෝඩියම් ඇසිටේට් (CH₃COONa) ජලීය දුාවණයක් ඔබට සපයා ඇත.
 - (i) ජලීය මාධායේදී සෝඩියම් ඇසිවේට්හි ජල විච්ඡේදනය සඳහා සමතුලිත ප්‍රතික්‍රයාව ලියන්න.
 - (ii) ඉහත (i) හි සමතුලිතතාවයෙහි සමතුලිතතා නියතය $K_{
 m h}$ සඳහා පුකාශනය ලියන්න.
 - (iii) 25 °C දී CH₃COOH (aq), හා H₂O (l) හි විසටන නියත පිළිවෙළින් $K_{\rm a}$ සහ $K_{\rm w}$ නම් $K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}$ බව පෙන්වන්න.
 - (iv) 25 °C දී $K_a = 1.8 \times 10^{-5} \text{ mol dm}^{-3}$ සහ $K_w = 1.0 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$ නම්, 25 °C දී K_h වල අගය ගණනය කරන්න.
 - (v) $0.10 \mod \text{dm}^{-3} \text{CH}_3 \text{COONa}$ දාවණයක 25.00 cm^3 කොටසක් $0.10 \mod \text{dm}^{-3} \text{HCl}$ දාවණයක් සමග අනුමාපනය කරනු ලැබේ. සමකතා ලක්ෂා සඳහා අවශා වන $0.10 \mod \text{dm}^{-3} \text{HCl}$ පරිමාව කුමක් ද? සමකතා ලක්ෂායේදී දාවණයේ pH අගය ගණනය කරන්න.
 - (vi) ඉහත (v) හි අනුමාපනයෙහි අනුමාපන වකුය (pH ට එදිරිව HCl පරිමාව) දළ සටහනකින් දක්වන්න.
 - (vii) ඉහත (v) හි අනුමාපනය සඳහා භාවිත කළ හැකි දර්ශකයක් සඳහන් කරන්න.
 - (viii) 0.10 mol dm⁻³ CH₃COOH දුාවණයක් 0.10 mol dm⁻³ ජලීය ඇමෝනියා දුාවණයක් සමග අනුමාපනය කළ **නොහැකි** වන්නේ මන්දැයි පැහැදිලි කරන්න.

(ලකුණු 90 යි)

- (b) දී ඇති උෂ්ණත්වයකදී වාෂ්පශීලි $A \, \mathrm{ev} \, \mathbf{B}$ දුව දෙකක් මිශු කිරීමෙත් ද්වයංගී පරිපූර්ණ දුව මිශුණයක් සාදන ලදී. දුව කලාපයෙහි සංයුතිය $X_{\mathrm{A}} = 0.2 \, \mathrm{ev} \, X_{\mathrm{B}} = 0.8$ වන විට වාෂ්ප කලාපයෙහි පීඩනය P වේ (X_{A} හා X_{B} යනු දුව කලාපයේදී පිළිවෙළිත් A හා \mathbf{B} හි මවුල භාග වේ). දුව කලාපයෙහි සංයුතිය $X_{\mathrm{A}} = 0.5 \, \mathrm{ev} \, X_{\mathrm{B}} = 0.5$ ලෙස වෙනස් කළ විට, වාෂ්ප කලාපයෙහි පීඩනය $\frac{5}{3}P$ බවට පත් වේ. මෙම උෂ්ණත්වයේදී A හා \mathbf{B} හි සන්තාප්ත වාෂ්ප පීඩන පිළිවෙළිත් P_{A}° සහ P_{B}° වේ.
 - (i) $P_{\rm A}^{\rm o} = 5 P_{\rm B}^{\rm o}$ බව පෙන්වන්න.
 - (ii) P_A, P_B සහ P_{ම්එ} හි වෙනස් වීම් දක්වමින් A හා B මිශුණය සඳහා අදාළ සංයුති-වාෂ්ප පීඩන සටහන ඇඳ ලේබල් කරන්න.
 - (iii) $P_{\rm A} = P_{\rm B}$ වන ලක්ෂායට අදාළ දුව කලාපයෙහි සංයුතිය ගණනය කරන්න.

(ලක්ණි 60 පු)

7. (a) 25 °C දී, පහත (1) සහ (2) අර්ධ-පුතිකියාවන් පදනම් කොටගෙන ගැල්වානීය විදයුත් රසායනික කෝෂයක් ගොඩනගන ලදී. $2H_2O(I) + O_2(g) + 4e \rightarrow 4OH^{-}(aq) -----(1); E^o = 0.40 V$ $2 \text{H}_2\text{O}(1) + 2 \text{e} \longrightarrow \text{H}_2(g) + 2 \text{OH}^-(aq) -----(2); E^\circ = -0.83 \text{ V}$ (i) මෙම කෝෂයෙහි ඇනෝඩීය හා කැතෝඩීය අර්ධ ප්‍රතික්‍රියාවන් හඳුනාගන්න. (ii) මෙම කෝෂයෙහි සම්පූර්ණ තුලිත කෝෂ ප්රතික්යාව ලියන්න. (iii) 25 °C දී කෝෂයෙහි E_{cell}^{o} ගණනය කරන්න. (iv) කෝෂය 600 s ක කාලයක් තුළ කි්යාත්මක කරන ලදී. මෙම කාලය තුළ ${
m H}_2({
m g})$ 1.0 mol වැය විය. l. කෝෂය තුළින් ගමන් කළ ඉලෙක්ටෝන මවුල සංඛාාව ගණනය කරන්න. II. කෝෂය කිුයාත්මක වන කාලය තුළ දී උත්පාදනය වූ විදයුත් පුමාණය (කුලෝම්වලින්) ගණනය කරන්න. $(1 \text{ F} = 96500 \text{ C mol}^{-1})$ III. කෝෂය කියාත්මක වන කාලය තුළ දී එමගින් ලැබුණු ධාරාව නියත ලෙස උපකල්පනය කරමින් එහි අගය ගණනය කරන්න. (v) ඉහත ගැල්වානීය විදයුත් රසායනික කෝෂයේ $m H_2(g)$ වෙනුවට පොපේන් $\left(C_3
m H_8(g)
ight)$ භාවිත කරයි. ${
m I.}$ මෙහිදී පොපේන්, ${
m CO}_2({
m g})$ හා ${
m H}_2{
m O}({
m l})$ බවට පරිවර්තනය වන බව උපකල්පනය කරමින් පොපේන් ඉලෙක්ටෝඩය සඳහා අර්ධ-කෝෂ පුතිකිුයාව ලියන්න. II. ඉහත (ii) හි පිළිතුරෙහි H₂(g) වෙනුවට පොපේන් භාවිත කර, සම්පූර්ණ කෝෂ පුතිකිුයාව සඳහා තුලිත සමීකරණය වයුත්පන්න කරන්න. III. පොපේන් භාවිත කරන කෝෂයට වඩා $\mathrm{H}_2(\mathrm{g})$ භාවිත කරන කෝෂයෙන් ලැබෙන පාරිසරික වාසියක් හේතු දක්වමින් සඳහන් කරන්න. (ලකුණු 75 යි) (b) (i) X යනු ආවර්තිතා වගුවේ හතරවන ආවර්තයට අයත් d-ගොනුවේ මූලදුවායකි. තනුක HCl සමග X පුතිකියා කළ විට $\mathbf{X_1}$ අවර්ණ දාවණය හා $\mathbf{X_2}$ වායුව ලැබේ. තනුක $\mathrm{NH_4OH/NH_4Cl}$ සමග $\mathbf{X_1}$ පිරියම් කර, ඉන්පසු මෙම දාවණය තුළින් H_2S බුබුලනය කළ විට, X_3 සුදු අවක්ෂේපය ලැබේ. තනුක HCl හි X_3 දුවණය වේ. $\mathbf{X_1}$ ට තනුක NaOH එක් කළ විට, $\mathbf{X_4}$ සුදු ජෙලටිනිය අවක්ෂේපය සෑදේ. වැඩිපුර තනුක NaOH හි සහ වැඩිපුර තනුක $\mathrm{NH_4OH}$ හි $\mathbf{X_4}$ දුවණය වී පිළිවෙළින් $\mathbf{X_5}$ හා $\mathbf{X_6}$ ලබාදෙයි. $\mathbf{X_5}$ හා $\mathbf{X_6}$ යන දෙකම අවර්ණ වේ. I. X සහ X_1 සිට X_6 දක්වා විශේෂ හඳුනාගන්න. (රසායනික සූතු දෙන්න) සැ.යු.: හේතු අවශා නැත. II. X හි ඉලෙක්ටුෝන විතාහසය ලියන්න. III. X1 අවර්ණ මන්දැයි පැහැදිලි කරන්න. IV. X₆ හි IUPAC නම ලියන්න. (ii) Y ද ආවර්තිතා වගුවේ X අයත් ආවර්තයේම ඇති d-ගොනුවේ මූලදුවායකි. Y ට n හා m සුලභ ඔක්සිකරණ අංක දෙක ඇත. n ට වඩා m විශාල වේ. ජලීය දුාවණයේදී Y^{n+} රෝස පැහැති Y_1 විශේෂය සාදයි. Y_1 අඩංගු දාවණය තනුක NaOH සමග පිරියම් කළ විට \mathbf{Y}_2 රෝස පැහැති අවක්ෂේපය සෑදේ. \mathbf{Y}_1 අඩංගු යන්තම් භාස්මික දුාවණයක් තුළින් $\mathrm{H_2S}$ බුබුලනය කළ විට, $\mathrm{Y_3}$ කළු පැහැති අවක්ෂේපය ලැබේ. $\mathrm{Y_1}$ අඩංගු දුාවණයට වැඩිපුර සාන්දු ඇමෝනියා එක් කළ විට කහ පැහැති දුඹුරු $\mathbf{Y_4}$ විශේෂය සැදේ. $\mathbf{Y_1}$ අඩංගු දාවණය සාත්දු $\stackrel{-}{
m HCl}$ සමග පිරියම් කළ විට නිල් පැහැති ${
m Y}_5$ විශේෂය ලැබේ. ${
m Y}_4$ වාතයට නිරාවරණය කළ විට Y₆ දුඹුරු පැහැති රතු විශේෂය සැදේ. I. n හා m හි අගයයන් දෙන්න. II. Y සහ \mathbf{Y}_1 සිට \mathbf{Y}_6 දක්වා විශේෂ හඳුනාගන්න. (රසායනික සූතු දෙන්න) සැ.යු. : හේතු අවශා නැත. III. Yⁿ⁺ හා Y^{m+} හි ඉලෙක්ටෝන විනාහස ලියන්න. IV. Y₅ හි IUPAC තම ලියන්න.

[දහතුන්වැනි පිටුව ඩලන්න.

- 9. (a) A හා B පලයෙහි දාවප අකාබනික සංයෝග වේ. A වර්ණවත් වන අතර B අවර්ණ වේ. A හා B හි ජලීය දාවණ එකට මිනු කළ විට, C සුදු අවක්ෂේපය හා ජලයෙහි දාවප D සංයෝගය සෑදේ. තනුක HCl හි C දවණය වී, එක් එලයක් ලෙස කටුක ගන්ධයක් ඇති E වායුව දෙයි. E, ආමලිකාත K₂Cr₂O₇ දාවණයක් තුළින් යැවූ විට දාවණය කොළ පැහැයට හැරෙයි. A හි ජලීය දාවණයකට තනුක NH₄OH එක් කිරීමේදී F කොළ පැහැති අවක්ෂේපය ලැබේ. වැඩිපුර තනුක NH₄OH හි F දවණය වී තද නිල් පැහැති G දාවණය ලබාදෙයි. NH₄OH/NH₄Cl එකතු කරන ලද ප්ලීය දාවණයක් තුළින් H₂S බුබුලනය කළ විට කළ අවක්ෂේපය සෑදේ. B හි ජලීය දාවණයකට AgNO₃ (aq) එක් කළ විට තනුක NH₄OH හි දාවා සුදු පැහැති H අවක්ෂේපය සෑදේ. B හි ජලීය දාවණයකට තනුක H₂SO₄ එක් කළ විට තනුක HCl හි අදාවා J සුදු අවක්ෂේපය සෑදේ. cහන් සිළු පරීක්ෂාවේදී B කොළ පැහැති දැල්ලක් ලබාදෙයි.
 - (i) A සිට J දක්වා විශේෂ හඳුනාගන්න. (රසායනික සූතු දෙන්න) සැ.සු.: හේතු අවශා නැත.
 - (ii) පහත දෑ සඳහා තුලිත රසායනික සමීකරණ ලියන්න.
 - I. C හා D සෑදීම

(ලකුණු 75 යි)

(b) යපස්, X, වල FeO, Fe₂O₃ සහ නිෂ්කිය දුවා අඩංගු වේ. X වල ඇති FeO සහ Fe₂O₃ ස්කන්ධ පුතිශතයන් නිර්ණය කිරීම සඳහා පහත දැක්වෙන පරීක්ෂණාත්මක කි්යාපිළිවෙළ යොදාගන්නා ලදී.

X වල 0.4800 g ස්කන්ධයක් සාන්දු අම්ල 10 cm³ හි දුවණය කරන ලදී. අදාවා දුවා ඉවත් කිරීමට මෙම දාවණය පෙරා, ඉන්පසු 50.00 cm³ දක්වා ආසුැත ජලය යොදාගනිමින් තනුක කරන ලදී. මෙම තනුක කරන ලද සම්පූර්ණ දාවණයම 0.020 mol dm⁻³ KMnO₄ දාවණයක් සමග අනුමාපනය කරන ලදී. අන්ත ලක්ෂායේදී ලැබුණු අනුමාපත පාඨාංකය 20.00 cm³ විය. අනුමාපනයෙන් පසු ලැබුණු සම්පූර්ණ දුාවණය pH අගය 12 දක්වා ඉහළ නංවන ලදී. මෙම අවස්ථාවේදී දාවණයේ ඇති ලෝහ අයන ඒවායේ හයිඩොක්සයිඩ ලෙස අවක්ෂේප විය. මෙම අවක්ෂේපය පෙරා නියත ස්කන්ධයක් ලැබෙන තුරු වියළන ලදී. ලැබුණු අවක්ෂේපයේ ස්කන්ධය

- (i) අනුමාපන සහ අවක්ෂේපණ ප්‍රතිකියා සඳහා තුලිත රසායනික සමීකරණ ලියන්න.
- (ii) X වල ඇති FeO සහ Fe₂O₃ ස්කන්ධ ප්‍රතිශතයන් ගණනය කරන්න. සැ.යු: ලෝහ හයිඩොක්සයිඩ වියළීමේදී ඒවායෙහි සංයුතියේ වෙනසක් නොවන සහ දාවණයේ දාවිත ඔක්සිජන් මගින් බලපෑමක් නොවන බව උපකල්පනය කරන්න. (H = 1, O = 16, Mn = 55, Fe = 56)

(ලකුණු 75 යි)

10.(a) පහත දැක්වෙන පුග්න [(i) – (v)] ස්පර්ශ කුමය මගින් සල්ෆියුරික් අමලය නිෂ්පාදනය මත පදනම් වේ.

- (i) යොදාගන්නා අමුදුවප තුන සඳහන් කරන්න.
- (ii) සිදුවන ප්‍රතික්‍රියා සඳහා තුලිත රසායනික සම්කරණ ලියන්න. නිසි තත්ත්වයන් අදාළ පරිදි සඳහන් කරන්න.
- (iii) ස්පර්ශ කුමයේ කාර්යක්ෂමතාව වැඩි කිරීමට ගෙන ඇති උපායමාර්ග **දෙකක්** සඳහන් කරන්න.
- (iv) ස්පර්ශ කුමයේ ප්‍රශස්ත තත්ත්ව නිර්ණය කිරීමේදී භාවිතවන මූලධර්ම දෙකක් සදහන් කොට, මෙම එක් එක් මූලධර්මය, ඔබ ඉහත (ii) කොටසේ දැක්වූ ප්‍රතික්‍රීයාවක් ආධාරයෙන් කෙටියෙන් පහදන්න.
- (v) සල්ෆියුරික් අම්ලය අමුදුවාසයක් ලෙස භාවිත කරන කර්මාන්ත දෙකක් නම් කරන්න.

(ලකුණු 50 යි)

- (b) කාබන්, නයිට්ජන් සහ සල්ෆර්හි විවිධ ඔක්සිකරණ අංක ඇති වායුමය සංයෝග ගෝලීය පාරිසරික ප්‍රශ්නවලට සාප්‍රවම දායක වෙයි.
 - (i) ගෝලීය උණුසුම ඉහළ යාමට සාජුවම දායකවන හැලජන් අඩංගු නොවන කාබන් සංයෝග දෙකක් සහ එක් නයිටුජන් සංයෝගයක් නම් කර මෙම සංයෝගවල C හා N හි ඔක්සිකරණ අංක සඳහන් කරන්න.
 - (ii) ඉහත (i) හි ඔබ තම කළ සංයෝග තුත මිනිස් ක්‍රියාකාරකම් හේතුවෙන් වායුගෝලයට එක්වන ආකාර සඳහන් කරන්න.
 - (iii) ඉහත (i) හි ඔබ සඳහන් කරන ලද සංයෝග ගෝලීය උණුසුම ඉහළ යාමට දායකවන ආකාරය පැහැදිලි කරන්න.
 - (iv) ප්‍රකාශ රසායනික ධූමිකාවට සාජ්‍රවම දායකවන නයිට්රන් සංයෝග දෙකක් N හි ඔක්සිකරණ අංක සමග නම් කරන්න.
 - (v) ඔබ (iv) හි සඳහන් කළ නයිටුජන් සංයෝගයක් මගින් පරිවර්ති ගෝලයේ ඕසෝන් සාදන ආකාරය තුලිත රසායනික සමීකරණ මගින් ලියා දක්වන්න.
 - (vi) පරිවර්ති ගෝලයේ ඕසෝන් මට්ටම දහවල් කාලයේ (afternoon) උපරිමයකට ළඟා වන්නේ මන්දැයි පැහැදිලි කරන්න.
 - (vii) නයිටුජන් සහ සල්ෆර්වල ඔක්සයිඩ ජල පුහවවල දාවා වීම හේතුවෙන් බලපෑමට ලක්වෙන ජල තත්ත්ව පරාමිති තුනක් සඳහන් කරන්න.

(ලකුණු 50 යි)

(c) පහත දැක්වෙන පුග්න ශාක පුහව ආශිත රසායනික නිෂ්පාදන මත පදනම් වේ.

- (i) මීරා පැසවීම මගින් පොල් රා හි එතනෝල් නිපදවන විට සිදුවන රසායනික වෙනස්කම දැක්වීමට අදාළ තුලිත සමීකරණ දෙන්න.
- (ii) ජෛව ඩිසල් නිෂ්පාදනයේදී අමුදුවා ලෙස ගන්නා ශාක තෙල්වලින් නිදහස් මේද අමල ඉවත් කිරීමට අවශා වන්නේ මන්දැයි පැහැදිලි කරන්න.
- (iii) හුමාල ආසවනය මගින් ශාක දුවා වලින් සගන්ධ තෙල් නිස්සාරණය, සංශුද්ධ ජලය සහ සගන්ධ තෙල් යන දෙකෙහිම තාපාංක වලට වඩා අඩු උෂ්ණත්වයකදී කළ හැකි වන්නේ මන්දැයි කෙටියෙන් පැහැදිලි කරන්න.

(ලකුණු 50 යි)

* * *

Visit Online Panthiya YouTube channel to watch Chemistry videos

