AL/2022(2023)/02/S-I

கிக்கு இ குதிக்கு (மில்கு பிரியிர் பதிப்பிறையிலையில் (All Rights Reserved) ழ வை எடி நிறைகளைகளு இலை விரைகளுக்கு பிருக்கு மான் பிருது குடியில் குடியில் குட்குக்கு குடியில் குடியில் குடியில் இவ்வைப் பிரிரைத்திலை கார்களுக்கு விருது குடியில் குடியில் குடியில் குடியில் குடியில் குடியில் குடியில் குடியில் Department of Examinations, Sri Lanka Department of இலிங்கை பிடியில் தொற்றுணைக்கள் மிடி, Sri Lanka Department of Lanmatters, Sri Lanka & BORD SENE OCTOCACED BY & BORD SENE OF Department of Examinations, Sri Lanka Barrow O DR 2015 From Stone අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2022(2023) கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2022(2023) General Certificate of Education (Adv. Level) Examination, 2022(2023) පැය දෙකයි රසායන විදනව I இரண்டு மணித்தியாலம் இரசாயனவியல் I Two hours I Chemistry උපදෙස්: * ආවර්තිතා වගුවක් සපයා ඇත. * මෙම පුශ්න පතුය පිටු 09 කින් යුක්ත වේ. * සියලුම පුශ්නවලට පිළිතුරු සපයන්න. 🛞 ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ. ※ පිළිතුරු පතුයේ නියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න. * පිළිතුරු පතුයේ පිටුපස දී ඇති අනෙක් උපදෙස් සැලකිලිමත්ව කියවන්න. * 1 සිට 50 තෙක් එක් එක් පුග්නයට (1), (2), (3), (4), (5) යන පිළිතුරුවලින් **නිවැරදි හෝ ඉතාමත් ගැළපෙන** හෝ පිළිතුර තෝරා ගෙන, එය පිළිතුරු පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදී කතිරයක් (X) යොද දක්වන්න. ප්ලෑන්ක්ගේ නියනය h = 6.626 × 10^{−34} J s සාර්චන වායු නියනය $R_{\rm c}$ = 8.314 J K $^{-1}$ mol $^{-1}$ ආලෝකයේ පුවේගය $c = 3 \times 10^8 \, {
m m \, s^{-1}}$ ඇවගාඩරෝ නියනය $N_A = 6.022 \times 10^{23} \, \mathrm{mol}^{-1}$ 1. පහත දැක්වෙන ඉලෙක්ටෝනික සංකුමණ අතුරෙන්, කුමක් පරමාණුක හයිඩුජන්වල රේඛා වර්ණාවලියේ දෘගෳ පරාසයට අයත් වේ ද? (n = පුධාන ක්වොන්ටම අංකය) (1) $n = 5 \rightarrow n = 3$ (2) $n = 4 \rightarrow n = 2$ (3) $n = 1 \rightarrow n = 2$ (4) $n = 3 \rightarrow n = 1$ (5) $n = 2 \rightarrow n = 1$ වැරදි වගන්තිය තෝරන්න. (1) පවුලි බහිෂ්කාරක මූලධර්මය කාක්ෂිකයක තුන්වන ඉලෙක්ටෝනයක් පැවතීමේ හැකියාව බැහැර කරයි. (2) පොටෑසියම් පරමාණුවක, ක්වොන්ටම් අංක n (පුධාන ක්වොන්ටම් අංකය) = 3 සහ m, (වුම්බක ක්වොන්ටම් අංකය) = 0 ඇති ඉලෙක්ටෝන සංබභාව 4 කි. (3) නයිට්පත් (N)හි සංයුජතා ඉලෙක්ටෝනයකට දැනෙන සඵල නෘෂ්ටික ආරෝපණය කාබන් (C)හි සංයුජතා ඉලෙක්ටෝනයකට දැනෙන සඵල නෟෂ්ටික ආරෝපණයට වඩා විශාල වෙයි. (4) Na⁺, Mg²⁺, K⁺ සහ Ca²⁺ අයන අතුරෙන් විශාලත්වයෙන් එකිනෙකට වඩාත්ම ආසන්න අයන දෙක වන්නේ K⁺ සහ Mg²⁺ ය. (5) කාබන්වල ඉලෙක්ටෝන ලබාගැනීමේ ශක්තිය ඍණ වේ. 3. Be, B සහ O වල දෙවන අයනීකරණ ශක්තිය $(X^+(g) \rightarrow X^{2+}(g) + e)$ වැඩිවන අනුපිළිවෙළ වනුයේ, (1) Be < B < 0 (2) Be < O < B (3) B < O < Be(4) B < Be < O(5) O < Be < B F₃ClO, FClO₂ සහ FClO₃ හි හැඩයන් වනුයේ පිළිවෙළින්, (1) චතුස්තලීය, තලීය තිකෝණාකාර සහ සීසෝ ය. (2) තලීය සමචතුරසුාකාර, තලීය නිකෝණාකාර සහ චතුස්තලීය ය. (3) සීසෝ, නිුආනති පිරමිඩාකාර සහ තලීය සමචතුරසුාකාර ය. (4) වතුස්තලීය, නිුආතති පිරමිඩාකාර සහ සීසෝ ය. (5) සීසෝ, තුිආනති පිරමිඩාකාර සහ චතුස්තලීය ය.

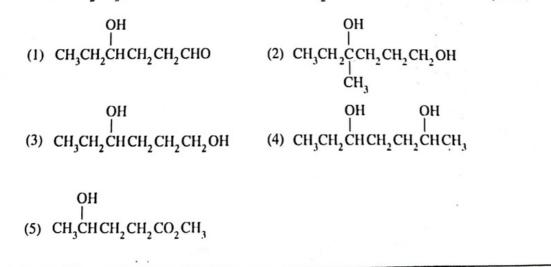
5. පහත දී ඇති සංයෝගයේ IUPAC නාමය කුමක් ද?

$$HO-CH_2-C\equiv C-CH-CHO$$

 $|$
 CH_2-CH_3

(1) 5-hydroxy-2-ethylpent-3-ynal

- (2) 3-formylhex-4-yn-6-ol
- (3) 2-ethyl-5-hydroxypent-3-ynal
- (4) 4-formyl-1-hydroxy-2-hexyne
- (5) 4-formylhex-2-yn-1-ol
- 6. අල්ප වශයෙන් දුාවා වන AB_2 ලවණයේ සංතෘප්ත ජලීය දුාවණයක්, 25 °C දී සාදාගන්නා ලදී. AB_2 හි දුාවාතා ගුණිතය 25 °C දී $3.20 \times 10^{-8} \text{ mol}^3 \text{ dm}^{-9}$ වේ. සංතෘප්ත දුාවණයේ B⁻ අයනයේ සාන්දුණය (mol dm⁻³) වන්නේ,


(1)
$$(1.6)^{\frac{1}{2}} \times 10^{-4}$$
 (2) $(3.2)^{\frac{1}{2}} \times 10^{-4}$ (3) $(3.2)^{\frac{1}{3}} \times 10^{-3}$ (4) 2.0×10^{-3} (5) 4.0×10^{-3}

- 7. නිවැරදි පුකාශය තෝරන්න.
 - (1) F^-, Cl^- සහ S^{2-} අයනවල ධාවණශිලතාව $F^- < S^{2-} < Cl^-$ යන පිළිවෙළට වැඩි වේ.
 - (2) Li^+, Na^+ සහ Mg^{2+} වල ධාවීකරණ බලය $\text{Mg}^{2+} > \text{Na}^+ > \text{Li}^+$ යන පිළිවෙළට අඩු වේ.
 - (3) O, F, Cl සහ S වල විදයුත් සෘණතාව F > O > S > Cl යන පිළිවෙළට අඩු වේ. 🗄
 - (4) Xe, CH_4, CH_3NH_2 සහ CH_3OH වල තාපාංක $CH_4 < Xe < CH_3NH_2 < CH_3OH$ යන පිළිවෙළට වැඩි වේ.
 - (5) N_2, O_2, F_2 සහ HF වල අන්තර් පරමාණුක බන්ධන දිග $N_2 < O_2 < F_2 < HF$ යන පිළිවෙළට වැඩි වේ.
- 8. P සහ Q සංයෝග එකිනෙකෙහි පාරතිමාන සමාවයවික වේ. පහත දැක්වෙන ඒවායින් P සහ Q සංයෝගයන්හි අණුක සූතුය විය හැක්කේ කුමක් ද?
 - (1) $C_5 H_{10}$ (2) $C_3 H_6$ (3) $C_4 H_6$ (4) $C_4 H_{10} O$ (5) $C_4 H_{10}$

9. CH₄, CH₃Cl, H₂CO, HCN සහ NCO⁻ ඵල කාබන් (C) පරමාණුවේ විදයුත් සෘණතාව **වැඩිවන** අනුපිළිවෙළ වනුයේ,

(1) $CH_4 < H_2CO < CH_3CI < HCN < NCO^-$ (2) $CH_3CI < CH_4 < H_2CO < HCN < NCO^-$ (3) $CH_4 < CH_3CI < H_2CO < HCN < NCO^-$ (4) $CH_4 < CH_3CI < NCO^- < H_2CO < HCN$ (5) $NCO^- < HCN < H_2CO < CH_4 < CH_3CI$

10. X කාබනික සංයෝගය 2,4-DNP සමග පිරියම් කළ විට වර්ණවත් අවක්ෂේපයක් ලබා නොදෙයි. ආමලික K₂Cr₂O₇ සමග X සංයෝගය පිරියම් කළ විට Y ඵලය සැඳේ. Y ඵලය 2,4-DNP සමග වර්ණවත් අවක්ෂේපයක් ලබා දේ. Y ඵලය 0,4-DNP සමග වර්ණවත් අවක්ෂේපයක් ලබා දේ. Y ඵලය Na₂CO₃ දාවණයක් සමග පිරියම් කළ විට CO₂ පිටකරයි. X සංයෝගය විය හැක්කේ,

500 K හිදී දෘඪ සංවෘත බඳුනක් තුළ පවතින පහත සමතුලිතතාවය සලකන්න.

$$A(g) + B(g) \rightleftharpoons 2C(g) : \Delta H < 0$$

උෂ්ණත්වය 750 K ට වැඩි කළ විට සමතුලිතතා නියතය K_p මත සිදුවන බලපෑම පහත සඳහන් කුමක් මගින් විස්තර/පැහැදිලි කරයි ද?

- පීඩනය වෙනස් නොවන නිසා K_p වෙනස් නොවේ.
- (2) ඉදිරි පුතිකියාවෙහි සකියන ශක්තිය අඩුවන බැවින් K_P වැඩි වේ.
- (3) ඵල අණු සංඛාහාව හා පුතිකියක අණු සංඛාහව එකිනෙකට සමාන බැවින් K_p වෙනස් නොවේ.
- (4) ආපසු පුතිකියාව තාප අවශෝෂක බැවින් ඉදිරි පුතිකියාවෙහි නැඹුරුතාවය වැඩි වී K_p අඩු වේ.
- (5) ඉදිරි ප්‍රතික්‍රියාව තාපදායක බැවත් ආපස් ප්‍රතික්‍රියාවෙහි නැඹුරුතාවය වැඩි වී K_p අඩු වේ.
- X(aq) + Y(aq) → Z(aq) ප්‍රතික්‍රියාව සඳහා දී ඇති උෂ්ණත්වයකදී සිදු කළ ආරම්භක ශීස්‍රතා මැනීමේ ප්‍රත්ෂණයක විස්තර පහත වගුවෙහි දක්වා ඇත.

පරීක්ෂණය	$[X(aq)]_0/mol dm^{-3}$	$[Y(aq)]_0/mol dm^{-3}$	ආරම්භක ශීසුතාවය/mol dm⁻³ s⁻¹
1	0.40	0.10	R
2	0.20	0.20	?

① පරීක්ෂණයේදී Z(aq) සැදීමේ ආරම්භක ශීසුතාවය R වේ. ප්‍රතික්‍රියාව X(aq) අනුබද්ධයෙන් පළමු පෙළ සහ Y(aq) අනුබද්ධයෙන් දෙවන පෙළ වේ. ② පරීක්ෂණයේදී Z(aq) සැදීමේ ආරම්භක ශීසුතාවය වන්නේ,

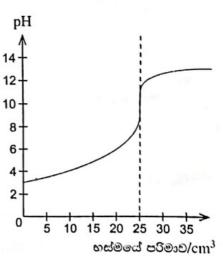
- (1) $\frac{R}{4}$ (2) $\frac{R}{2}$ (3) R (4) 2R (5) 4R
- 13. සංශුද්ධ අයන්(II) ඔක්සලේට් (FeC_2O_4) 0.4314 g සාම්පලයක් වැඩිපුර තනුක H_2SO_4 හි දුවණය කරන ලදි. මෙම සම්පූර්ණ දාවණයම 0.060 mol dm⁻³ KMnO₄ දාවණයක් සමග අනුමාපනය කරන ලදී. අන්ත ලක්ෂායේදී බියුරෙට්ටු පාඨාංකය වනුයේ, (FeC_2O_4 වල සාපේක්ෂ අණුක ස්කන්ධය = 143.8)

(1) 20.00 cm^3 (2) 25.00 cm^3 (3) 30.00 cm^3 (4) 40.00 cm^3 (5) 50.00 cm^3

14. දි ඇති උෂ්ණත්වයකදී රේචනය කරන ලද 1.0 dm³ දෘඪ සංවෘත බඳුනක් තුළට H₂S(g) යම් මවුල පුමාණයක් ඇතුල් කර පද්ධතිය පහත දැක්වෙන සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදි.

 $2H_{2}S(g) \rightleftharpoons 2H_{2}(g) + S_{2}(g)$

සමතුලිතතාවයේදී $H_2S(g)$ වලින් x භාගයක් (fraction x) වියෝජනය වී ඇති බව සොයාගන්නා ලදී. සමතුලිතතාවයේදී බඳුන තුළ මුළු පීඩනය P විය. මෙම පද්ධතියේ සමතුලිතතා නියතය K_p පහත සඳහන් කුමක් මගින් ලබා දේ ද?


(1)
$$\frac{x^2 P}{(2+x)(1-x)^2}$$

(2) $\frac{(2+x)(1-x)^2 P}{x^3}$
(3) $\frac{x^3 P}{(2+x)(1-x)^2}$
(4) $\frac{(1-x)P}{x^2(1-x)^2}$
(5) $\frac{(2+x)(1-x)^2}{x^3 P}$

15. දී ඇති උප්ණත්වයකදී 0.10 mol dm⁻³ නොදන්නා අම්ලයක 25.00 cm³ ක්, 0.10 mol dm⁻³ නොදන්නා හස්මයක් සමග සිදු කළ අනුමාපනයකදී ලබාගත් pH වකුය දකුණුපසින් පෙන්වා ඇත.

පහත සඳහන් තුමක් මෙම අනුමාපනය සඳහා යොදාගත් අම්ලය සහ හස්මය පිළිබඳව වඩාත් යෝගෳ වේ ද?

ඒක-භාස්මික පුබල අම්ලයක්, ඒක-ආම්ලික පුබල හස්මයක් සමග
 ඒක-භාස්මික පුබල අම්ලයක්, ඒක-ආම්ලික දුබල හස්මයක් සමග
 ද්වි-භාස්මික පුබල අම්ලයක්, ඒක-ආම්ලික පුබල හස්මයක් සමග
 ඒක-භාස්මික දුබල අම්ලයක්, ඒක-ආම්ලික පුබල හස්මයක් සමග

(5) ඒක-භාස්මික දුබල අම්ලයක්, ඒක-ආම්ලික පුබල හස්මයක් සමග

AL/2022(2023)/02/S-I

16. s සහ p ගොනුවල මුලදුවා සම්බන්ධයෙන් පහත දී ඇති කුමන පුකාශය අසතා ද?

- සෙනෝන් (Xc) නිෂ්තිය වායුවක් වුවත් ඔක්සිකරණ අංක +2, +4 සහ +6 වන සංයෝග සාදයි.
- (2) හයිඩුජන් හේලයිඩ අතුරෙන්, වැඩිම බන්ධන විසටන ශක්තිය ඇත්තේ HF වලට ය.
- (3) දෙවන (II) කාණ්ඩයේ මූලදුවායන්හි හයිඩොක්සයිඩවල ජලයෙහි දාවාතාවය කාණ්ඩයේ පහළට යන විට අඩුවන අතර, ඒවායෙහි සල්ෆේටවල දාවාතාවය වැඩි වේ.
- (4) පළමුවන (1) කාණ්ඩයේ ලෝහ අතුරෙන් (Li සිට Cs දක්වා) සීසියම්වලට අඩුම දුවාංකය ඇත.
- (5) NH₂OH හි නයිටුජන්වල ඔක්සිකරණ අංකය –1 වේ.

17. 25 °C දී, බීකරයක ඇති x mol dm⁻³ CH₃COOH(aq) දුාවණ V₁ cm³ කට y mol dm⁻³ (y > x) NaOH(aq) දුාවණ V₂ cm³ (V₂ > V₁) එකතු කරන ලදී. අවසාන මිගුණයෙහි pH අගය වනුයේ, (25 °C දී ජලයෙහි වසටන නියතය K₀ වේ.)

(1) $pK_{w} - \log\left\{\frac{V_{2}y - V_{1}x}{V_{1} + V_{2}}\right\}$ (2) $pK_{w} + \log\left\{\frac{V_{2}y - V_{1}x}{V_{1} + V_{2}}\right\}$ (3) pK_{w} (4) $-pK_{w} - \log\left\{\frac{V_{2}y - V_{1}x}{V_{1} + V_{2}}\right\}$ (5) $-pK_{w} + \log\left\{\frac{V_{2}y - V_{1}x}{V_{1} + V_{2}}\right\}$

18. සම්මත තත්ත්ව යටතේදී පහත දී ඇති ප්තිකියාව සඳහා පහත සඳහන් කුමන වගන්තිය වැරදී වේ ද?

 $2H_2(g) + O_2(g) \rightarrow 2H_2O(g) : \Delta H^\circ = -483.7 \text{ kJ mol}^{-1}$

- (1) පුනිකියා මවුල එකක් සඳහා 483.7 kJ ක තාප ශක්තියක් පිට වේ.
- (2) වැය වූ H₂(g) ඔවුල දෙකක් සඳහා 483.7 kJ ක තාප ශක්තියක් පිට වේ.
- (3) සැදුන H₂O(g) මවුල දෙකක් සඳහා 483.7 kJ ක තාප ශක්තියක් පිට වේ.
- (4) 4H₂(g) + 2O₂(g) → 4H₂O(g) ප්‍රතික්‍රියාව සඳහා 967.4 kJ ක තාප ශක්තියක් පිට වේ.
- (5) වැය වූ O₂(g) ඔවුල එකක් සඳහා 241.85 kJ ක තාප ශක්තියක් පිට වේ.

19. පහත සඳහන් කුමන වගන්තිය ගැල්වානීය කෝෂයක් සඳහා වැරදි වේ ද?

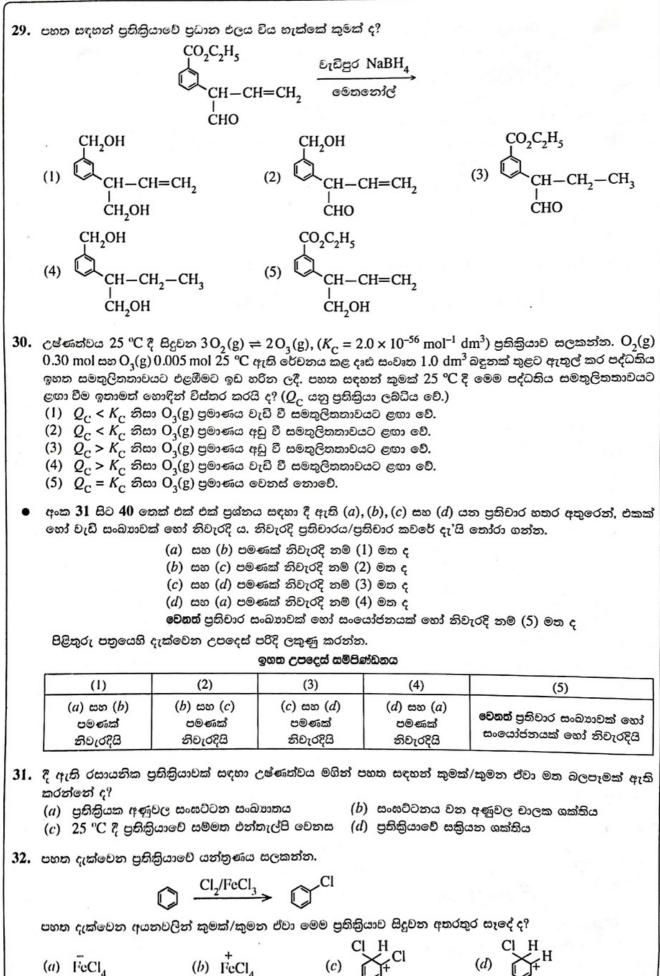
- (1) කෝෂ පුතිකියාව ස්වයංසිද්ධ වේ.
- (2) කෝෂය විදයුත් ශක්තිය නිපදවයි.
- (3) කැතෝඩය ඍණ ආරෝපිත වේ.
- (4) ඔක්සිහරණ අර්ධ-පුතිකි්යාව කැතෝඩය මත සිදු වේ.
- (5) ඔක්සිකරණ අර්ධ-පුතිකියාව ඇනෝඩය මත සිදු වේ.
- 20. බෝමොබෙන්සීන්හි සම්පුයුක්ත වපූහයක් නොවන්නේ පහත දැක්වෙන ඒවායින් කුමක් ද?

ADma

(1)
$$\bigcirc \overset{\ddot{B}r:}{\Box}$$
 (2) $\bigcirc \overset{\dagger}{\Box} \overset{\ddot{B}r:}{\Box}$ (3) $_\bigcirc \overset{\ddot{B}r^+}{\Box}$ (4) $\bigcirc \overset{\ddot{B}r^+}{\Box}$ (5) $\bigcirc \overset{\ddot{B}r:}{\Box}$

 පහත සඳහන් කුමන උෂ්ණත්ව හා පීඩන තත්ත්ව යටතේදී තාත්වික වායුවක් පරිපූර්ණ වායුවක් ලෙස හැසිරීමට නැඹුරු වේ ද?

උෂ්ණත්වය


	Cersiaco	00000
(1)	ඉතා ඉහළ	ඉතා ඉහළ
(2)	ඉතා ඉහළ	ඉතා පහළ
(3)	ඉතා පහළ	ඉතා ඉහළ
(4)	ඉතා පහළ	ඉතා පහළ
(5)	සියලුම උෂ්ණත්ව	ඉතා පහළ

- 22. සම්මත උෂ්ණත්වයේ හා පීඩනයේ පවතින සර්වසම දෘඪ සංවෘත බඳුන් දෙකක් තුළ $H_2(g)$ 1.0 mol ක් හා $O_2(g)$ 2.0 mol ක් අඩංගු වේ. ඉහත පද්ධති දෙක සම්බන්ධව, පහත සඳහන් කුමක් සතා ෙව් ද?
 - (1) H₂(g) හා O₂(g) දෙකටම එකම මධාහ-චාලක ශක්තියක් ඇත.
 - (2) $H_2(g)$ හා $O_2(g)$ දෙකටම එකම මධාා-වේගයක් ඇත.
 - (3) $H_2(g)$ හා $O_2(g)$ දෙකටම එකම ස්කන්ධයක් ඇත.
 - (4) $H_2(g)$ හා $O_2(g)$ දෙකටම එකම ඝනත්වයක් ඇත.
 - (5) H2(g) හා O2(g) දෙකටම එකම විසර්ජන වේගයක් ඇත.

දක්වයි ද?	s 100 J K ⁻¹ mol ⁻¹ o	වේ. පහත සඳහන් කු	මක් X(aq) හි මවුලි¤	ත එන්ටොපය (J K ් I	o X(s) mol ⁻¹)
(1) -170	(2) -30	(3) 0	(4) +30	(5) +170	
24. CH ₃ -CH=CH ₂ ස ඵලය ලබාදෙන පුනිද්	හ HBr අතර සිදුවන බියාවේ යන්තුණයේ :	ඉලෙක්ටොෆිලික ආස නිවැරදි පියවරක් දක්8	ාලන පුතිකියාවේ පුයි වන්නේ පහත දී ඇති	ාන එලය සලකන්න. ද ඒවායින් කුමක් ද?	පුධාන
	CH_2^+ $Br^- \longrightarrow 0$		Br		
	$CH_2 H \longrightarrow C$				
(3) CH ₃ -CH=0	CH ₂ H-Br -	→ Сн ₃ -сн-сн	; + Br		
~	CH ₂ ^H –Br –		$\ddot{H}_2^+ + \ddot{B}r^-$		
(5) CHCH-	$CH_3 Br \longrightarrow 0$	СН – СН–СН			
		Br			
25	0 0 00	7.5			
25. නියත උෂ්ණත්වයස හා පරිමාව දෙගුණ	ා ඇති සංවෘත පද්ධති කළ විට පද්ධතියේ ස	යක සිදුවන වායුමය ස සමතලිතතා නියතය.	මතුලිත පුතිකිුයාවක් :	සලකන්න. පද්ධතියේ පී	ඩනය
(1) හතරෙන් එක	ක් $\left(\frac{1}{4}\right)$ වේ.	(2) බාගයක් (<u>1</u>	වේ.		
(3) එලෙසම පවා	ີລ.	(4) දෙගුණ වේ.	,		
(5) හතර ගුණයස	් වේ.				
26. මැග්නිසියම් නයිටු	යිඩ් සහ ලිතියම් නයිදි	ටුයිඩ් පහත සමිකරණ?	වල ආකාරයට ජලය ස	පමග පුතිකියා කරයි.	
	$I_2(s) + 6H_2O(l) \rightarrow$				
Li ₃ N($(s) + 3H_2O(l) \rightarrow 31$	$LiOH(aq) + NH_3(g)$)		
මැග්තිසියම් ලෝහය මවුල තුනක් සහ ලිතියම් ලෝහය නොදන්නා පුමාණයක් අඩංගු මිශුණයක් වැඩිපුර N ₂ වායුව සමග සම්පූර්ණයෙන් පුතිකිුයා කරවන ලදී. මෙම පුතිකිුයාවෙන් ලැබෙන එල මිශුණය සම්පූර්ණයෙන්ම වැඩිපුර ජලය සමග පුතිකිුයා කරවූ විට NH ₃ වායුව 44.2 g නිපදවිය. ලෝහ මිශුණයේ ඇති ලිතියම්වල ස්කන්ධය වන්නේ, (H = 1, Li = 7, N = 14, Mg = 24)					
(1) 1.8 g	(2) 4.2 g	(3) 12.6 g	(4) 14.2 g	(5) 20.2 g	- 8
27. ඇමෝනියා, පහත උෂ්ණත්වවලදී සං	ත දැක්වෙන තුලිත ෙස්ලේෂණය කළ හැක		තික සමීකරණයෙන් ම	පෙන්වා දී ඇති පරිදි,	ඉහළ
	$g) + H_2(g) \rightarrow NH_3$				
NO 45.0 g සහ	H ₂ 12.0 g මගින් සංස් සේකන්ධය: H ₂ = 2, l	ේල්ණෙය කළ හැකි උ NO = 30, NH, = 17)	පරිම NH ₃ පුමාණය,	ගුෑම්වලින් වනුයේ,	
(1) 2.4	(2) 4.8	(3) 12.8	(4) 25.5	(5) 40.8	
28. උප්ණත්වය 25 °	C දී විදයුත් රසායනික න අතර මෙම කිුයාව(කෝපයක් තුළ සිදුවන ලියෙහි අර්ධ-පුනිකියා	o 2H ₂ O ₂ (aq) → 2H වන්නේ,	I ₂ O(<i>l</i>) + O ₂ (g) පුතිකිය	ාවෙහි
	$O_{2}(g) + 4 H^{+}(aq) +$			= 1.23 V	
	$O_2(g) + 2H^+(aq) +$				
පුතිකියාව (2) සි	 ම සම්මත ඔක්සිහරණ	විභවය E_2° වනුයේ,			
(1) -1.78 V	(2) -0.68 V		(4) +0.68 V	(5) +1.78 V	

[හයවැති පිටුව බලන්න,

(a) FeCl

[හත්වැනි පිටුව බලන්න.

AL/2022(2023)/02/S-I

- 33. 25 °C දී සහ ලෙඩ් අයඩයිඩ් (Pbl₂) වැඩිපුර පුමාණයක් සමග සමතුලිතව පවතින ජලීය ලෙඩ් අයඩයිඩ් දාවණ 1.0 dm³ ක් තුළ Pb²⁺(aq) අයහ a mol පුමාණයක් අඩංගු වේ. පහත සඳහන් තුමක්/තුමන ඒවා මෙම පද්ධතිය සඳහා නිවැරදි වේ ද?
 - (a) පරිමාව දෙගුණ කළ විට ${
 m Pb}^{2+}({
 m aq})$ පුමාණය $2a \ {
 m mol}$ වේ.
 - (b) පරිමාව දෙගුණ කළ විට $Pb^{2+}(aq)$ සාන්දුණය $2a \mod dm^{-3}$ වේ.
 - (c) ඝන Nal(s) ස්වල්ප පුමාණයක් එකතු කළ විට Pb²⁺(aq) පුමාණය අඩු වේ.
 - (d) පරිමාව දෙගුණ කළ විට Pb²⁺(aq) පුමාණය $\frac{a}{2}$ mol වේ.
- 34. හතරවන අාවර්තයට අයත් d ගොනුවේ මූලදුවෂ සාදන සංයෝග/අයන සම්බන්ධව පහත සඳහන් කුමන ප්‍රකාශය ප්‍රකාශ නිවැරදි වේ ද?
 - (a) පුබල අම්ල සහ පුබල හස්ම සමග Cr2O3 පුතිකිුයා කිරීම බලාපොරොත්තු විය හැක.
 - (b) Fe²⁺(aq), Fe³⁺(aq), Mn²⁺(aq) සහ Ni²⁺(aq) අඩංගු දාවණවලට NaOH(aq) එකතු කළ විට වැඩිපුර NaOH(aq) හි අදුාවය අවක්ෂේප සැදේ.
 - (c) KMnO₄ සහ K₂Cr₂O₇ යන දෙකම ආමලික තත්ත්ව යටතේදී H₂O₂, O₂ වායුවට පරිවර්තනය කිරීමට හැකියාවක් ඇති පුබල ඔක්සිකාරක වේ.
 - (d) $[CuCl_4]^{2-}$ වල IUPAC තාමය tetrachlorocuprate(II) ion වේ.
- 35. පහත දී ඇති පුකාශවලින් කුමක්/කුමන ඒවා නිවැරදි ද?
 - (a) පොපනොයික් අම්ලයේ තාපාංකය, 1-බියුටතෝල්හි එම අගයට වඩා වැඩි ය.
 - (b) පෙන්ටේන්හි තාපාංකය, 2-මෙතිල්බියුටේන්හි එම අගයට වඩා වැඩි ය.
 - (c) බියුටතැල්හි තාපාංකය, l-බියුටතෝල්හි එම අගයට වඩා වැඩි ය.
 - (d) හෙක්සේන්හි තාපාංකය, 1-පෙන්ටනෝල්හි එම අගයට වඩා වැඩි ය.
- 36. නයිටික් අමලය (HNO3) සහ එහි ලවණ සම්බන්ධව පහත සඳහන් කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
 - (a) තනුක සහ සාන්දු HNO, යන දෙකම ඔක්සිකාරක ලෙස හැසිරේ.
 - (b) NH,NO, කාප වියෝජනයෙන් N,O සහ ජලය ලබා දේ.
 - (c) HNO, වල N-O බන්ධන සියල්ලම දිගින් සමාන ය.
 - (d) රත් කළ විටදී වුවද කාබන්, සාන්දු HNO, සමග පුතිකියා නොකරයි.
- 37. ඕසෝන් ස්ථරය සම්බන්ධයෙන් පහත සඳහන් කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
 - (a) එය ඉහළ වායුගෝලයේ (ස්ථර ගෝලය) ඕසෝන් පමණක් ඇති පුදේශයකි.
 - (b) එය වායුගෝලයේ පරමාණුක ඔක්සිජන් බහුලව පවතින පුදේශයකි.
 - (c) එය සූර්යාගෙන් මුක්තවන පාරජමබුල කිරණ පාථිවි පෘෂ්ඨය කරා ළඟාවීම වළක්වන පුදේශයකි.
 - (d) එය ඔසෝන් බිදවැටීම ක්ලෝරීන් මුක්ත බණ්ඩක යන්තුණයක් හරහා පමණක් සිදුවන පුදේශයකි.
- 38. උෂ්ණත්වය 25 °C දී වසන ලද බෝතලයක් තුළ 0.135 mol dm⁻³ මිතයිල් ඇමින් (CH₃NH₂) ජලීය දාවණ 100.00 cm³ ක පරිමාවක් ජලය සමග මිගු නොවන කාබනික දාවක 75.00 cm³ ක් සමග හොදින් සොලවා සමතුලිතතාවයට එළඹීමට ඉඩහරින ලදී. ජලීය ස්ථරයෙන් 50.00 cm³ ක් ගෙන 0.200 mol dm⁻³ HCl දාවණයක් සමග අනුමාපනය කල විට අන්ත ලක්ෂාය 15.00 cm³ විය. මිතයිල් ඇමින් සහ කාබනික දාවකය අතර පුතිකියාවක් සිදු නොවේ. පහත සඳහන් කුමක්/කුමන ඒවා නිවැරදි ද?
 - (a) කාබනික සහ ජලීය ස්ථර අතර $ext{CH}_3 ext{NH}_2$ හි වහාප්ති සංගුණකය $K_{ ext{D}}$ 1.67 වේ.
 - (b) කාබනික සහ ජලීය ස්ථර අතර $ext{CH}_{3} ext{NH}_{2}$ හි වහාප්ති සංගුණකය $K_{ ext{D}}$ 4.67 වේ.
 - (c) ජලීය ස්ථරය තුළ CH3NH2 වැඩිපුර දුවණය වේ.
 - (d) කාබනික ස්ථරය තුළ CH₃NH₂ වැඩිපුර දුවණය වේ.
- 39. ජලාශවල ජලයේ ඇති දාවිත ඔක්සිජන් මට්ටම සම්බන්ධයෙන් පහත සඳහන් කුමන ප්‍රකාශය/ප්‍රකාශ නිවැරදි වේ ද?
 - (a) ජලයේ දාවිත ඔක්සිජන්හි සංයුතිය වායුගෝලීය ඔක්සිජන්හි සංයුතියම වෙයි.
 - (b) සුපෝෂණය හේතුවෙන් ජලයේ දාවිත ඔක්සිජන් මට්ටම පහළ යයි.
 - (c) ජලයේ දාවිත ඔක්සිජන් මට්ටම වැඩි විට ජලයේ H₃S නිපදවිය හැක.
 - (d) පුහාසංස්ලේෂණය හරහා ජලජ ශාක ජලයේ දාවිත ඔක්සිජන් මට්ටමට දායකත්වයක් දක්වයි.

- 40. දී ඇති කාර්මික කියාවලි හා සම්බන්ධව පහත දැක්වෙන කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
 - (a) ධාරා ඌෂ්මකයක් මගින් යකඩ නිස්සාරණයේදී භාවිත වන අමුදුවායක් වන කෝක්, ඔක්සිහාරකයක් ලෙස පමණක් කුයා කරයි.
 - (b) මැග්නීසියම නිස්සාරණයේදී (Dow කියාවලිය) භාවිත වන අමුදුවායක්, විදයුත් විච්ඡේදන පියවරේදී සැදෙන අතුරුඵලයක් යොදාගනිමින් පුනර්ජනනය කළ හැක.
 - (c) රුටයිල් භාවිත කරමින් සංශුද්ධතාවයෙන් ඉහළ TiO2 නිෂ්පාදනයේදී, ක්ලෝරිනීකරණ පියවරේදී අකාබනික අපදුවර ඉවත් වෙයි.
 - (d) ඔස්වල්ඩ් කුමය භාවිතයෙන් නයිටික් අම්ලය නිෂ්පාදනයේදී උත්පේරකය ලෙස Fe භාවිත වේ.
 - දංක 41 සිට 50 තෙක් එක් එක් පුග්නය සඳහා පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම පුකාශ යුගලයට හොඳින්ම ගැළපෙනුයේ පහත වගුවෙහි දැක්වෙන පරිදි (1), (2), (3), (4) සහ (5) යන පුතිචාරවලින් කවර පුතිචාරය දැ`යි තෝරා පිළිතුරු පතුයෙහි උචිත ලෙස ලකුණු කරන්න.

පුතිචාරය	පළමුවැනි පුකාශය	දෙවැනි පුකාශය	
(1)	සකාප වේ.	සතා වන අතර, පළමුවැනි පුකාශය නිවැරදිව පහදා දෙයි.	
(2)	සතාප වේ.	සතා වන නමුත් පළමුවැනි පුකාශය නිවැරදිව පහදා නොදෙයි	
(3)	සතාප වේ.	අසතා වේ.	
(4)	අසතා වේ.	සතාා වේ.	
(5)	අසතා වේ.	අසතා වේ.	

[පළමුවැනි	දෙවැනි පුකාශය		
41.	ක්ලෝරින්හි ඔක්සො අම්ලවල ආම්ලිකතාවයන් අඩු ඔත අනුපිළිවෙළ වනුයේ HClO ₁ > HClO ₃ > HClO ₂ > HOCl	ක්ලෝරින්හි ඔක්සො අම්ලවල ක්ලෝරින් පරමාණුවේ ඔක්සිකරණ අංකය වැඩි වන විට ඔක්සො අම්ලයෙහි ආම්ලිකතාවය වැඩි වේ.		
42.	H ₂ S වායුව ආමලික K ₂ Cr ₂ O ₇ දාවණයක් සමග පුතිකියා කළ විට මූලදුවයමය සල්ෆර් සැදේ.	ආමලික මාධායේදී H ₂ S වායුවට ඔක්සිහාරකයක් ලෙස හැසිරිය හැක.		
43.	Cl. (g) + 2 l [−] (aq) → 2 Cl [−] (aq) + l ₂ (s) පුතිකුියාව මත පදනම් වන විදයුත් රසායන කෝෂය විදයුතය නිපදවීමට භාවිත කළ හැක.	Cl ₂ (g), I ₂ (s)වලට වඩා පුබල ඔක්සිහාරකයකි.		
44.	දුතාඞ පුතිකාරක ජලය සමග පුතිකිුයා කර ඇල්කොහොල ලබාදෙයි.	ගිනාඩ් පුතිකාරකයක ඇති කාබත්-මැග්නීසියම් බන්ධනයේ කාබත් පරමාණුවට භාගික සෘණ ආරෝපණයක් ඇත.		
45.	ඇතිලීන්වලින් සෑදෙන ඩයසෝනියම් ලවණ අඩු උෂ්ණක්වවලදී (0−5 °C) ස්ථායි වන අතර පුාථමික ඇලිෆැටික ඇමීනවලින් සෑදෙන ඩයසෝනියම් ලවණ මෙම උෂ්ණක්වවලදී අස්ථායි වේ.	ඇනිලීන් හි නයිටුජන් පරමාණුව මත ඇති එකසර ඉලෙක්ටෝන යුගලය බෙන්සීන් වලය මත විස්ථානගත වී ඇත.		
46.	දී ඇති උತ්ණත්වයකදී සම්පූර්ණයෙන් මිශුවන දුව දෙකකින් පරිපූර්ණ ද්වයංගී මිශුණයක් සෑදීමේදී ඇතිවන එන්තැල්පි වෙනස ශුනෳ වේ.	දී ඇති උෂ්ණත්වයකදී, පරිපූර්ණ ද්වයංගී දුව මිශුණයක පවතින සියලුම අන්තර්-අණුක බල සමාන වේ.		
47.	වර්ෂා ජලයේ pH අගය 6.5 ලෙස වාර්තා වූ විට එය අමල වැසි ලෙස සැලකේ. 🌙	වර්ෂා ජලයේ pH අගය 7 ට අඩු වීම SO ₃ සහ NO ₂ ආමලික වායූන් දුවණය වීම නිසා පමණක් සිදුවෙයි.		
48.	දී ඇති උෂ්ණත්වයකදී පළමු පෙළ පුතිති්යාවක අර්ධජ්ව කාලය t _{1/2} = 0.693/k යන සමීකරණයෙන් ලබාදෙන අතර k යනු පළමු පෙළ වේග නියතය වේ.	t _{l/2} = 50 s වන පළමු පෙළ පුතිකියාවක 150 s කට පසු පුතිකියාවේ 87.5% සමපූර්ණ වේ.		
49.	හේබර්-බොෂ් කුමය මගින් NH ₃ වායුව නිෂ්පාදනයේදී 600 °C ට වඩා ඉහළ උෂ්ණත්ව යොදාගනී.	තේබර්-බොෂ් කුමයෙන් NH ₃ වායුව ලබාදෙන සමතුලිත පුතිකියාවේ සකියන ශක්තිය උෂ්ණත්වය ඉහළ යාමේදී අඩුවේ.		
50.	බෙක්ලයිට් ආකලන බහුඅවයවකයක් ලෙස වර්ගීකරණය කරනු ලැබේ.	බෙක්ලයිට්වලට නි්මාන ජාල වයූහයක් ඇත.		
	* * *			

2

Visit Online Panthiya YouTube channel to watch Chemistry videos

